A Possible Time-Series Object

Don Sawyer and FEPC

00-05-21

1. Objectives and Approach

The general objective in considering the definition of a time-series object is to identify a possible standardization effort that will result in the following benefits:

1. There can be a set of standard interfaces supported by formatting system software (e.g., possible extensions to, or built on top of, HDF, CDF, IDFS), which then allows applications to work in a standard way with time series data from a variety of instruments and across disciplines.

2. Data product developers will know what metadata is needed to support the standard time-series view of their data, thereby enabling new data products to be more readily accessible to existing application software.

3. The understanding of the time aspects of data made available as a time-series object will already be known to data users and will therefor reduce their learning time in handling new data products.

The FEPC is pursuing a draft 'time-series' object to demonstrate the feasibility and utility of pursuing this type of standardization. The FEPC does not expect its work to be a standard, but to point the way if this proves productive. Given a draft definition, the implications for supporting it by some of the current space physics formatting systems used today, and by new technologies such as XML, including XDF, can be investigated.

A time-series object can not do all that anyone might want. Each potential user may have some favorite requirements to be fulfilled. As a way to proceed, a summary of what FEPC thinks a time-series object looks like is presented in section 2. Then, a list of questions that a time-series object might be expected to be able to answer is postulated in section 3. In other words, from an application point of view, what inputs should one be able to give it and what type of results should one expect to be able to get back? FEPC proposes to focus on a minimum set of time-related services, but allow additional services to be added as needed. A full standardization effort would flesh this out more thoroughly. Section 4 provides some examples of how a time-series object might be implemented using well known formats. Section 5 provides a view of how an API for a time-series object may appear.

2. Time-Series Object Conceptual View

It is important to note that the material to follow provides a conceptual view and is not an implementation. How the necessary information is organized and stored is not addressed.

Figure 1: Time-Series Object Conceptual View

1. A Time-Series Object appears (conceptually) as a sequence of records, as shown in Figure 1.

2. Each record contains a 'key time' value (including date), which is monotonically increasing or decreasing from record to record.

3. Each record also contains other data, of arbitrary complexity. This data can be viewed as a sequence of fields, but may also be viewed as groups of fields which map to various types of objects such as images, vectors, matrices, etc. It is not necessary to call out all detailed structure, so that a whole image may be viewed as one field if so desired.

4. Each record also contains one or more 'processing durations'. Each such processing duration gives the time span over which one or more of the other data fields has been determined. For example, a data field may be a 1 minute average of other values, in which case the 'processing duration' would be 1 minute. It may, of course, be zero as well. The 'processing duration' is known for all data fields, identified as such, in the time-series object.

5. Each record also contains one or more 'time offset' values. Each data field has a time offset value which relates, through the use of addition, its time of observation/determination to the record's key time value.

6. The relationship of the key time, plus time offset, to each fields processing duration is known because either it is given explicitly or it is a part of the standard. Possible relationships include:

 - For each subset of the data fields, the key time, after being augmented with the relevant time offset value, corresponds to the beginning, the middle, or the end of the associated processing duration value. Figure 2 below is an example where the offset is to the middle of the processing duration for data fields 'x' and 'y', but to the beginning of the processing duration for data field 'z'.

 - Other ways to define the relationships are possible, but are not explored here.

7. The meaning of each field, including key time, processing durations, time offsets, and data is known and described. This is a general requirement intended to ensure that the information that comprises the time-series object is at least minimally understandable.

3. Questions to be Supported by the Time-series Object

These questions can be viewed as motivating the necessary data or metadata to be available as a part of the time-series object, and/or as suggesting the types of values that an API might require.

3.1 Proposed Required Questions for Any Data Object

1. What are the fields available? (Give names)

2. What is the definition of field 'x'.

3. What is the representation type for field 'x' (e.g., integer, real, image array, character string)

4. What are the units for field 'x'?

3.2 Proposed Required Questions for Time-series Object

1. What is the meaning of the key time as used in this object?

2. What is the start date/time and what is the end date/time for this object?

3. What is the processing duration for data field 'x'?

4. What is the offset time for data field 'x'?

5. How does the offset time relate to the processing duration for data field x? (e.g., 'mid point')

6. Get the records between time a and time b.

7. Get the values for fields x, y, and z for the key time between time a and time b.

3.3 Proposed Optional Questions for Time-series Object

1. Get the values for fields x, y, and z for their times between a and b.

2. How many records exist between time a and time b?

3. How many bytes exist between time a and time b?

4. What is the maximum record size in bytes?

5. How many records in the object?

6. How many data fields are present in the object?

4. Example Implementations

In order to clarify both conceptual and practical issues, this section provides some examples of how a time-series object might be implemented using a few data formats. For comparison purposes, a model data set is defined and then mapped into the time series object view.

4.1 Model Data Set

The data set consists of the following:

· One year of data.

· One day of data per data file.

· One minute of data in each data record.

· Gappy data, where minutes with no data have no records.

The data in the record are:

Word Meaning Comments

1. time tag say, YYYYDDDtHHMM

2. s/c location X,Y,Z vector at time of time tag

3. count rate 1 hypothetically instantaneously determined

 count rate at 1st of 12 energy steps,

 determined at the record's time tag

4.-14. count rates rates determined at 2rd-12th energy

 2-12 steps, each offset by 5 sec from

 measurement of prior step

15. density determined from rates 1-12 by taking

 moments of distribution function.

Word 1 is ASCII, word 2 is (3x)R*4, words 3-14 are I*4, and word 15 is R*4.

Relative to offsets from the record's time tag, words 3-14 have offsets of 0, 5, 10, ... 55 sec. For word 15 the record's time tag designates the start time (not mid or end or other time) for word 15's "processing interval."

4.2 Partial Mapping to the Time Series Object (TSO) View

The model data set of section 4.1 is mapped to a TSO view. Where the processing duration is zero, the relationship of the duration to the associated time is arbitrarily set to 'Begin of Duration' .

TSO record = data set record

TSO = sequence of TSO records, covering the year (Note: Gaps in the data result in gaps in the TSO record sequence.)

Time Order = ordered with increasing values of the time tag

Key Time = time tag

TSO Field Matrix:

Field Name Offset Int. Processing Duration Relationship of time

 To Proc. Duration

---------- ---------- ------------------- -----------------

S/C Location

 X value 0 sec 0 sec "Begin of Duration"

 Y value 0 0 "Begin of Duration"

 Z value 0 0 "Begin of Duration"

Count Rate 1 0 sec 0 sec "Begin of Duration"

Count Rate 2 5 sec 0 sec "Begin of Duration"

Count Rate 3 10 sec 0 sec "Begin of Duration"

.

.

.

Count Rate 12 55 sec 0 sec "Begin of Duration"

Density 0 sec 55 sec "Begin of Duration"

4.3 CDF

The model data set will be implemented using CDF's Variables and

Attributes. Variable is an entity that represents/contains data, and

attribute is an enity that contains the properties and annotation of a

variable. One or more attributes can be associated with a variable. For

example, a variable can have MIN and MAX attributes to represent the

minimum and maximum values allowed for this variable as well as text

description of the variable.

A CDF file can be created either by writing a program using CDF Application

Prgramming Interfaces (APIs), creating a CDF skeleton table, or using the

CDFedit interactive CDF editor. The easiest way to create a CDF file is by

creating a CDF skeleton table that is an ASCII text file template in which

one can define variables, atrributes, and other information such as file

and variable compression methods to be used, text description of the CDF

file/data set, data encoding scheme, and etc. SkeletonTable, one of the

CDF tools distributed as part of the standard CDF distribution package,

creates a skeleton table from an existing CDF file. Since the model data

set is simple and only requires Variables and Attributes for

implementation, a simple CDF file (test.cdf) that contains variables,

attributes, and a few global metadata about the data set is selected (to

minize editing), and a skeleton table is generated using the following

command at the operating system prompt:

 skeletontable test.cdf

The above command produces a file called test.cdf.skt. The test.cdf.skt

file is edited using an ASCII text editor to include the variables and

attributes that are needed for the model data set. The edited skeleton

table is then fed into the SkeletonCDF utility, another CDF tool

distributed as part of the standard CDF distribution package, to generate

the CDF file called TSO.cdf that contains the Time Series Object (TSO)

model data set. The following command is used to generate the final CDF

file:

 skeletoncdf -cdf TSO.cdf test.cdf

The file extension of .ext is not required when specifying the input file

name that is supplied to the SkeletonCDF utility to generate the TSO.cdf

file. Below describes the contents of the final skeletable. Note that

there are two attributes (VALIDMIN and VALIDMAX) defined and commented out

for the Density variable to show how one would go about defining valid

ranges for a particular variable.

Since I'm not a scientist, I am pretty sure that I missed some attributes

that can be attached some of the variables listed in the skeleton table

below. But you get the idea that the way to attach an attribute to a

variable is to add a row containing an attribute name and its data type and

value right after the variable declaration.

! Skeleton table for the "TSO.cdf" CDF.

! Generated: Friday, 19-May-2000 09:56:14

! CDF created/modified by CDF V2.7.0

! Skeleton table created by CDF V2.7.0b

#header

 CDF NAME: TSO.cdf

 DATA ENCODING: IBMPC

 MAJORITY: ROW

 FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

! --------- ------------ ------------ ------- ---- -----

 0/7 2 3 0/z 0

#GLOBALattributes

! Attribute Entry Data

! Name Number Type Value

! --------- ------ ---- -----

 "Project" 1: CDF_CHAR { "TSO Implementation in CDF" } .

 "PI" 1: CDF_CHAR { "David Han" }

 2: CDF_CHAR { "NASA/GSFC" } .

#VARIABLEattributes

 "Description"

 "InitialTimeOffset"

 "TimeIncrement

#zVariables

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "YYYY" CDF_INT2 1 1 1 T F

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "DDD" CDF_INT2 1 1 1 T F

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "HH" CDF_INT2 1 1 1 T F

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "MM" CDF_INT2 1 1 1 T F

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "SCLocation" CDF_FLOAT 1 1 3 T T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 "Description" CDF_CHAR { "X,Y,Z vector at time of time tag" } .

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "CountRates" CDF_INT4 1 1 12 T T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 "Description" CDF_CHAR { "Count rate at each of 12 energy steps"

}.

 "InitialTimeOffset" CDF_INT2 { 0 } .

 "TimeIncrement" CDF_INT2 { 5 } .

 ! RV values were not requested.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "Density" CDF_FLOAT 1 1 1 T T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 ! "VAIDMIN" CDF_FLOAT { 11.1 }

 ! "VAIDMAX" CDF_FLOAT { 99.9 }

 . ! Terminating period required.

#end

4.4 HDF4

Time Series Object Implementation in HDF

--

Links to Background Information

 * Hierarchical Data Format (HDF) Information. The ASC is currently using

 HDFv4.1r2

--

Introduction

We attempt to describe how a Time Series Object (TSO) could be implemented

in HDF4, using the model data set described by Joe King as an example. The

model data set is reproduced here:

One year of data. One day of data per data file.

One minute of data in each data record. Gappy data -

minutes with no data have no records. The data

in the record are:

Word Meaning Comments

1. time tag say, YYYYDDDtHHMM

2. s/c location X,Y,Z vector at time of time tag

3. count rate 1 hypothetically instantaneously determined

 count rate at 1st of 12 energy steps,

 determined at the record's time tag

4.-14. count rates rates determined at 2rd-12th energy

 2-12 steps, each offset by 5 sec from

 measurement of prior step

15. density determined from rates 1-12 by taking

 moments of distribution function.

Word 1 is ASCII, word 2 is (3x)R*4, words 3-14 are I*4, and word 15 is R*4.

(Don asked me to add this format info. Hopefully how various formats would

handle offset, processing interval, and other time-specification info is

only weakly if at all dependent on such formats.)

Relative to offsets from the record's time tag, words 3-14 have offsets

of 0, 5, 10, ... 55 sec. For word 15 the record's time tag designates

the start time (not mid or end or other time) for word 15's "processing

interval."

--

Implementation of TSO in HDF Format

We'll use two HDF building blocks to implement the TSO in HDF - Vgroups and

Vdatas. Vgroups are generic grouping elements allowing a user to associate

related objects within an HDF file. As Vgroups can contain other Vgroups, it

is possible to build a hierarchical file. Vdatas are generic list objects.

Data is organized into "fields" within each Vdata. Each field is identified

by a unique "field name". The type of each field may be any of the basic

types that HDF supports. Fields of different types may exist within the same

Vdata.

For this example, Vgroups are not very important. If there were data from

several different instruments within the data file, one could define a

Vgroup for each instrument, for example. In any case, within a Vgroup we can

define a Vdata, and within the Vdata we can define the fields into which the

data is to be organized. So, there will be a correspondence between the

Vdata fields and the Words in Joe's model data set.

An easy way to define the Vdata fields is via a C data structure. Given this

definition, a straightforward series of calls to HDF library routines is

needed to set up the Vdata, and to begin reading/writing data records

from/to a data file. This definition (including the comments) can become a

part of the data file if it is later incorporated into an Annotation of the

Vdata (see below).

struct TOS_data_1min {

 /* UT time-tag data */

 char8 time_tag[12]; /* ASCII time tag - YYYYDDDHHMM */

 int32 year; /* integer year */

 int32 day; /* integer day of year */

 int16 hr; /* hour of day */

 int16 min; /* min of hour */

 float64 fp_year; /* floating point year */

 float64 fp_doy; /* floating point Day of Year */

 float64 ACEepoch; /* Number of seconds since 00:00:00 01-01-1996 UT*/

 float32 sc_location; /* X,Y,Z vector at time of time tag (GSE) */

 int32 count_rates[12]; /* count rate at each of 12 energy steps. */

 /* Each rate is offset +5secs from the previous */

 /* rate, with the first rate offset 0 secs from */

 /* the time tag */

 float32 density; /* determined from the 12 rates by taking */

 /* moments of distribution function. Time tag

 /* designates the start-time of the processing

 /* interval for this item */

};

Note that the time-tag in the definition above contains more fields than Joe

mandated - that's just to indicate that there are many ways of specifying

Time, some useful for plotting routines, some for readability, etc, etc. No

matter which subset one decides upon, one is going to annoy somebody...

--

Metadata (Annotations and Attributes)

We use HDF File Annotations and HDF Object Annotations and HDF Attributes to

record metadata within HDF files. Any generic HDF data browser tool worth

its salt should be able to display all annotations and attributes contained

within any HDF file.

HDF annotations are basically containers into which one can dump short text

descriptions. File annotations are used to record global information about

the dataset. For instance, at least three file annotations are attached to

each ACE Level 2 data file:

 * Data description: A general description of the data, including

 processing dates and version numbers.

 * Contact Info: Instrument team contact information.

 * Release Notes: Provided by the instrument team.

Object annotations can be attached to Vgroups or Vdatas or other objects

within a HDF file. We would attach an object annotation to the TSO Vdata

which would describe the Vdata fields. The C data structure defined above

(with comments) would be a minimal starting point for this annotation.

An HDF attribute has a name, a data type, a number of attribute values, and

the attribute values themselves. Any number of attributes can be assigned to

either a Vdata or any field within a Vdata, as long as they are named

uniquely.

One use of HDF attributes is to define units for the fields. For instance,

the "min" field could have an attribute with name="UNITS", data-type= char,

num_of_values=7, and values="minutes".

Another use of attributes would be to define the offsets for the

count-rates. Since we have chosen to contain the offsets in a 12-element

array, the array could have an attribute with name="OFFSETS",

data-type=int16, num-of-values=12, and values=0,5,10,15,...

At this point, we have to trust that the user figures out the units for the

offsets...can we have an attribute of an attribute?!

One could define OFFSET attributes with value=0 for sc_location and density,

but I'm not sure if that would confuse or clarify things...I think the Vdata

annotation is adequate information for the user.

--

4.5 IDFS

4.6 FITS

4.7 Others?

5.0 Time-series API

(tbd)

time

Key Time

Field 'x'

Processing

Duration

Field 'y'

Processing

Duration

Field 'z'

Processing

Duration

Field 'x' Time Offset

Field 'y' Time Offset

Field 'z' Time Offset

Figure 2: Time Relationships Example

Key Time

Field 1

Field 1 Time

Offset

Field 1

Processing

Duration

Field 1 Time

Relationship

Field 2

Field 2 Time

Offset

Field 2

Processing

Duration

Field 2 Time

Relationship

Etc.

Field m

Field m Time

Offset

Field m

Processing

Duration

Field m Time

Relationship

TSO Record 1

