A Possible Time-Series Object

Don Sawyer, David Han, Mike Martin, Teck Choo, Andrew Davis, Tom McGlynn, Carrie Gonzalez and Formats Evolution Process Committee
00-06-12

1. Objectives and Approach

The general objective in considering the definition of a time-series object is to identify a possible standardization effort that will result in the following benefits:

1. There can be a set of standard interfaces supported by formatting system software (e.g., possible extensions to, or built on top of, HDF, CDF, IDFS), which then allows applications to work in a standard way with time series data from a variety of instruments and across disciplines.

2. Data product developers will know what metadata is needed to support the standard time-series view of their data, thereby enabling new data products to be more readily accessible to existing application software.

3. The understanding of the time aspects of data made available as a time-series object will already be known to data users and will therefor reduce their learning time in handling new data products.

The FEPC is pursuing a draft 'time-series' object to demonstrate the feasibility and utility of pursuing this type of standardization. The FEPC does not expect its work to be a standard, but to point the way if this proves productive. Given a draft definition, the implications for supporting it by some of the current space physics formatting systems used today, and by new technologies such as XML, including XDF, can be investigated.

A time-series object can not do all that anyone might want. Each potential user may have some favorite requirements to be fulfilled. As a way to proceed, a summary of what FEPC thinks a time-series object looks like is presented in section 2. Then, a list of questions that a time-series object might be expected to be able to answer is postulated in section 3. In other words, from an application point of view, what inputs should one be able to give it and what type of results should one expect to be able to get back? FEPC proposes to focus on a minimum set of time-related services, but allow additional services to be added as needed. A full standardization effort would flesh this out more thoroughly. Section 4 provides some examples of how a time-series object might be implemented using well known formats. Section 5 provides a view of how an API for a time-series object may appear.

2. Time-Series Object Conceptual View

It is important to note that the material to follow provides a conceptual view and is not an implementation. How the necessary information is organized and stored is not addressed.

Figure 1: Time-Series Object Conceptual View

1. A Time-Series Object appears (conceptually) as a sequence of records, as shown in Figure 1.

2. Each record contains a 'key time' value (including date), which is monotonically increasing or decreasing from record to record.

3. Each record also contains other data, of arbitrary complexity, which may vary from record to record. This data can be viewed as a sequence of fields, but may also be viewed as groups of fields which map to various types of objects such as images, vectors, matrices, etc. It is not necessary to call out all detailed structure, so that a whole image may be viewed as one field if so desired.

4. Each record also contains one or more 'processing durations'. Each such processing duration gives the time span over which one or more of the other data fields has been determined. For example, a data field may be a 1 minute average of other values, in which case the 'processing duration' would be 1 minute. It may, of course, be zero as well. The 'processing duration' is known for all data fields, identified as such, in the time-series object.

5. Each record also contains one or more 'time offset' values. Each data field has a time offset value which relates, through the use of addition, its time of observation/determination to the record's key time value.

6. The relationship of the key time, plus time offset, to each fields processing duration is known because either it is given explicitly or it is a part of the standard. Possible relationships include:

 - For each subset of the data fields, the key time, after being augmented with the relevant time offset value, corresponds to the beginning, the middle, or the end of the associated processing duration value. Figure 2 below is an example where the offset is to the middle of the processing duration for data fields 'x' and 'y', but to the beginning of the processing duration for data field 'z'.

 - Other ways to define the relationships are possible, but are not explored here.

7. The meaning of each field, including key time, processing durations, time offsets, and data is known and described. This is a general requirement intended to ensure that the information that comprises the time-series object is at least minimally understandable.

3. Questions to be Supported by the Time-series Object

These questions can be viewed as motivating the necessary data or metadata to be available as a part of the time-series object, and/or as suggesting the types of values that an API might require.

3.1 Proposed Required Questions for Any Data Object

1. What are the fields available (when looking across all the records)? (Give names)

2. What is the definition of field 'x'.

3. What is the representation type for field 'x' (e.g., integer, real, image array, character string)

4. What are the units for field 'x'?

3.2 Proposed Required Questions for Time-series Object

1. What is the meaning of the key time as used in this object?

2. What is the start date/time and what is the end date/time for this object?

3. What is the processing duration for data field 'x'?

4. What is the offset time for data field 'x'?

5. How does the offset time relate to the processing duration for data field 'x'? (e.g., 'mid point')

6. Get the records between time a and time b.

7. Get the values for fields 'x' and 'y' for the key time between time a and time b.

3.3 Proposed Optional Questions for Time-series Object

1. Get the values for fields 'x' and 'y' for their times between a and b.

2. How many records exist between time a and time b?

3. How many bytes exist between time a and time b?

4. What is the maximum record size in bytes?

5. How many records in the object?

6. How many unique data fields are present in the object?

4. Example Implementations

In order to clarify both conceptual and practical issues, this section provides some examples of how a time-series object might be implemented using a few data formats. For illustrative purposes, a model data set is defined and then mapped into the time series object view.

4.1 Model Data Set

The data set consists of the following:

· One year of data.

· One day of data per data file.

· One minute of data in each data record.

· Gappy data, where minutes with no data have no records.

The data in the record are:

Word Meaning Comments

1. time tag say, YYYYDDDtHHMM

2. s/c location X,Y,Z vector at time of time tag

3. count rate 1 hypothetically instantaneously determined

 count rate at 1st of 12 energy steps,

 determined at the record's time tag

4.-14. count rates rates determined at 2rd-12th energy

 2-12 steps, each offset by 5 sec from

 measurement of prior step

15. density determined from rates 1-12 by taking

 moments of distribution function.

Word 1 is ASCII, word 2 is (3x)R*4, words 3-14 are I*4, and word 15 is R*4.

Relative to offsets from the record's time tag, words 3-14 have offsets of 0, 5, 10, ... 55 sec. For word 15 the record's time tag designates the start time (not mid or end or other time) for word 15's "processing interval."

4.2 Partial Mapping to the Time Series Object (TSO) View

The model data set of section 4.1 is mapped to a TSO view. Where the processing duration is zero, the relationship of the duration to the associated time is arbitrarily set to 'Begin of Duration' .

TSO record = data set record

TSO = sequence of TSO records, covering the year (Note: Gaps in the data result in gaps in the TSO record sequence.)

Time Order = ordered with increasing values of the time tag

Key Time = time tag

TSO Field Matrix:

Field Name Offset Int. Processing Duration Relationship of time

 To Proc. Duration

---------- ---------- ------------------- -----------------

S/C Location

 X value 0 sec 0 sec "Begin of Duration"

 Y value 0 0 "Begin of Duration"

 Z value 0 0 "Begin of Duration"

Count Rate 1 0 sec 0 sec "Begin of Duration"

Count Rate 2 5 sec 0 sec "Begin of Duration"

Count Rate 3 10 sec 0 sec "Begin of Duration"

.

.

.

Count Rate 12 55 sec 0 sec "Begin of Duration"

Density 0 sec 55 sec "Begin of Duration"

4.3 CDF

The model data set is implemented using CDF's Variables and Attributes.

Variable is an entity that represents/contains data, and attribute is the

mechanism for storing metadata. There are two types of attributes in CDF:

global and variable. Global attributes are used to describe a CDF

file/data set (e.g. data set creator, file history, etc.) and to hold

values that are common/global to the data set. Similarly, variable

attributes are used to describe or provide additional information about

variables. One or more variable attributes can be attached to a variable.

For example, a variable can have MIN and MAX attributes to represent the

minimum and maximum values allowed for this variable as well as text

description of the variable.

A CDF file can be created either by writing a program using CDF Application

Prgramming Interfaces (APIs), creating a CDF skeleton table, or using the

CDFedit interactive CDF editor. The easiest way to create a CDF file is by

creating a CDF skeleton table that is an ASCII text file template in which

one can define variables, atrributes, and other information such as file

and variable compression methods to be used, text description of the CDF

file/data set, data encoding scheme, and etc. SkeletonTable, one of the

CDF tools distributed as part of the standard CDF distribution package,

creates a skeleton table from an existing CDF file. Since the model data

set is simple and only requires Variables and Attributes for

implementation, a simple CDF file (test.cdf) that contains variables,

attributes, and a few global metadata about the data set is selected (to

minize editing), and a skeleton table is generated using the following

command at the operating system prompt:

 skeletontable test.cdf

The above command produces a file called test.cdf.skt. The test.cdf.skt

file is edited using an ASCII text editor to include the variables and

attributes that are needed for the model data set. The edited skeleton

table is then fed into the SkeletonCDF utility, another CDF tool

distributed as part of the standard CDF distribution package, to generate

the CDF file called TSO.cdf that contains the Time Series Object (TSO)

model data set. The following command is used to generate the final CDF

file:

 skeletoncdf -cdf TSO.cdf test.cdf

The file extension of .ext is not required when specifying the input file

name that is supplied to the SkeletonCDF utility to generate the TSO.cdf

file.

Below is a skeleton table that implements the model data set with the

following assumptions:

- Time offset doesn't vary from record to record.

- Processing duration doesn't vary from record to record.

- Time relationship doesn't vary from record to record.

- Key time and count rates vary from record to record.

- Fill data is used for missing data.

Variables YYYY, DDD, HH, and MM are used to store 'key time' value.

Variables SCLocation, CountRates, and Density represent the spacecraft

location, count rate at each of 12 energy steps, and density that is

determined from 12 count rates, respectively. Global attributes are used

to describe the creator of the CDF file (TSO.cdf), to provide a brief

description of this CDF file, and to further describe some variable

attributes (e.g. gTimeOffset, gProcessingDuration, etc.). Since the key

time variables (YYYY, DDD, HH, MM) are self-explanatory, no attributes

(metadata) are defined for these variables. The rest of the variables are

not independent or compelete by themselves, and variable attributes are

used to further describe these variables. The following mapping describes

what variable attributes are used for each of the variables.

 Variable Name Attribute Name

 ------------- --------------

 SCLocation Description

 TimeOffset

 ProcessingDuration

 TimeRelationship

 CountRate Description

 TimeOffset

 TimeIncrement

 ProcessingDuration

 TimeRelationship

 Density Description

 TimeOffset

 ProcessingDuration

 TimeRelationship

The variable attributes described above except for Description are also not

complete by themselves and need additional information. For example,

there's no information about what the unit of ProcessingDuration is;

there's no information about what the valid values are for the

TimeRelationShip attribute; and so on. The following global attributes are

used to further describe these variable attributes:

 Variable Attribute Name Global Attribute Name

 ----------------------- ---------------------

 TimeOffset gTimeOffset

 TimeIncrement gTimeIncrement

 ProcessingDuration gProcessingDuration

 TimeRelationship gTimeRelationship

The logical TSO receord, once the model is implemented, consists of the

following fields: key time (keyTime), spacecraft location (SCLocation),

count rates(countRates), density (Density). Note that the global and

variable attributes are not part of the logical TSO record. With CDF,

users can store and retrieve the entire or a portion of the logical TSO

receord at a time.

! Skeleton table for the "TSO.cdf" CDF.

! Generated: Friday, 19-May-2000 09:56:14

! CDF created/modified by CDF V2.7.0

! Skeleton table created by CDF V2.7.0b

#header

 CDF NAME: TSO.cdf

 DATA ENCODING: IBMPC

 MAJORITY: ROW

 FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

! --------- ------------ ------------ ------- ---- -----

 0/7 6 5 0/z 0

#GLOBALattributes

! Attribute Entry Data

! Name Number Type Value

! --------- ------ ---- -----

 "Project" 1: CDF_CHAR { "TSO Implementation in CDF" } .

 "Author" 1: CDF_CHAR { "David Han" }

 2: CDF_CHAR { "NASA/GSFC" } .

 "gTimeOffset" 1: CDF_CHAR { "Time offset from key time" }

 2: CDF CHAR { "UNIT = Seconds" }

 3: CDF_CHAR { "ATTR = TimeOffset" } .

 "gTimeIncrement" 1: CDF_CHAR { "Time increment between count

rates" }

 2: CDF CHAR { "UNIT = Seconds" }

 3: CDF_CHAR { "ATTR = TimeIncrement" } .

 "gProcessingDuration" 1: CDF_CHAR { "Processing duration time" }

 2: CDF CHAR { "UNIT = Seconds" }

 3: CDF_CHAR { "ATTR = ProcessDuration" } .

 "gTimeRelationship" 1: CDF_CHAR { "Valid time relationship values"}

 2: CDF CHAR { "ATTR = TimeRelationship" }

 3: CDF CHAR { "VALID = start of duration |" }

 4: CDF_CHAR { "middle of duration |" }

 5: CDF_CHAR { "end of duration" } .

#VARIABLEattributes

 "Description"

 "ProcessingDuration"

 "TimeIncrement"

 "TimeOffset"

 "TimeRelationship"

#zVariables

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "YYYY" CDF_INT2 1 1 1 T

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "DDD" CDF_INT2 1 1 1 T

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "HH" CDF_INT2 1 1 1 T

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "MM" CDF_INT2 1 1 1 T

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "SCLocation" CDF_FLOAT 1 1 3 T T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 "Description" CDF_CHAR { "X,Y,Z vector at time of time tag" }

 "TimeOffset" CDF_FLOAT { 0.0 }

 "ProcessingDuration" CDF_FLOAT { 0.0 }

 "TimeRelationship" CHF_CHAR { "start of duration" } .

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "CountRate" CDF_INT4 1 1 12 T T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 "Description" CDF_CHAR {"Count rate at each of 12 energy steps"}

 "TimeOffset" CDF_FLOAT { 0.0 }

 "TimeIncrement" CDF_FLOAT { 5.0 }

 "ProcessingDuration" CDF_FLOAT { 0.0 }

 "TimeRelationship" CHF_CHAR { "start of duration" } .

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "Density" CDF_FLOAT 1 1 1 T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 "Description" CDF_CHAR {"Density determined from 12 count rates"}.

 "TimeOffset" CDF_FLOAT { 0.0 }

 "ProcessingDuration" CDF_FLOAT { 55.0 }

 "TimeRelationship" CHF_CHAR { "start of duration" } .

#end

NOTE:

 1. The "Record Variance" column specifies whether or not the

 variable's values change from record to record.

 2. The "Dimension Variances" column specifies whether or not the

 values change along the corresponding dimension.

 3. The "Record Variance" and "Dimension Variances" columns can

 have one of the following values:

 T - True.

 F - False

 ' ' - Blank value. This means "not applicable."

4.4 HDF4

Time Series Object Implementation in HDF

--

Links to Background Information

 * Hierarchical Data Format (HDF) Information. The ASC is currently using

 HDFv4.1r2

--

Introduction

We attempt to describe how a Time Series Object (TSO) could be implemented

in HDF4, using the model data set described by Joe King as an example. The

model data set is reproduced here:

One year of data. One day of data per data file.

One minute of data in each data record. Gappy data -

minutes with no data have no records. The data

in the record are:

Word Meaning Comments

1. time tag say, YYYYDDDtHHMM

2. s/c location X,Y,Z vector at time of time tag

3. count rate 1 hypothetically instantaneously determined

 count rate at 1st of 12 energy steps,

 determined at the record's time tag

4.-14. count rates rates determined at 2rd-12th energy

 2-12 steps, each offset by 5 sec from

 measurement of prior step

15. density determined from rates 1-12 by taking

 moments of distribution function.

Word 1 is ASCII, word 2 is (3x)R*4, words 3-14 are I*4, and word 15 is R*4.

(Don asked me to add this format info. Hopefully how various formats would

handle offset, processing interval, and other time-specification info is

only weakly if at all dependent on such formats.)

Relative to offsets from the record's time tag, words 3-14 have offsets

of 0, 5, 10, ... 55 sec. For word 15 the record's time tag designates

the start time (not mid or end or other time) for word 15's "processing

interval."

--

Implementation of TSO in HDF Format

We'll use two HDF building blocks to implement the TSO in HDF - Vgroups and

Vdatas. Vgroups are generic grouping elements allowing a user to associate

related objects within an HDF file. As Vgroups can contain other Vgroups, it

is possible to build a hierarchical file. Vdatas are generic list objects.

Data is organized into "fields" within each Vdata. Each field is identified

by a unique "field name". The type of each field may be any of the basic

types that HDF supports. Fields of different types may exist within the same

Vdata.

For this example, Vgroups are not very important. If there were data from

several different instruments within the data file, one could define a

Vgroup for each instrument, for example. In any case, within a Vgroup we can

define a Vdata, and within the Vdata we can define the fields into which the

data is to be organized. So, there will be a correspondence between the

Vdata fields and the Words in Joe's model data set.

An easy way to define the Vdata fields is via a C data structure. Given this

definition, a straightforward series of calls to HDF library routines is

needed to set up the Vdata, and to begin reading/writing data records

from/to a data file. This definition (including the comments) can become a

part of the data file if it is later incorporated into an Annotation of the

Vdata (see below).

struct TOS_data_1min {

 /* UT time-tag data */

 char8 time_tag[12]; /* ASCII time tag - YYYYDDDHHMM */

 int32 year; /* integer year */

 int32 day; /* integer day of year */

 int16 hr; /* hour of day */

 int16 min; /* min of hour */

 float64 fp_year; /* floating point year */

 float64 fp_doy; /* floating point Day of Year */

 float64 ACEepoch; /* Number of seconds since 00:00:00 01-01-1996 UT*/

 float32 sc_location; /* X,Y,Z vector at time of time tag (GSE) */

 int32 count_rates[12]; /* count rate at each of 12 energy steps. */

 /* Each rate is offset +5secs from the previous */

 /* rate, with the first rate offset 0 secs from */

 /* the time tag */

 float32 density; /* determined from the 12 rates by taking */

 /* moments of distribution function. Time tag

 /* designates the start-time of the processing

 /* interval for this item */

};

Note that the time-tag in the definition above contains more fields than Joe

mandated - that's just to indicate that there are many ways of specifying

Time, some useful for plotting routines, some for readability, etc, etc. No

matter which subset one decides upon, one is going to annoy somebody...

--

Metadata (Annotations and Attributes)

We use HDF File Annotations and HDF Object Annotations and HDF Attributes to

record metadata within HDF files. Any generic HDF data browser tool worth

its salt should be able to display all annotations and attributes contained

within any HDF file.

HDF annotations are basically containers into which one can dump short text

descriptions. File annotations are used to record global information about

the dataset. For instance, at least three file annotations are attached to

each ACE Level 2 data file:

 * Data description: A general description of the data, including

 processing dates and version numbers.

 * Contact Info: Instrument team contact information.

 * Release Notes: Provided by the instrument team.

Object annotations can be attached to Vgroups or Vdatas or other objects

within a HDF file. We would attach an object annotation to the TSO Vdata

which would describe the Vdata fields. The C data structure defined above

(with comments) would be a minimal starting point for this annotation.

An HDF attribute has a name, a data type, a number of attribute values, and

the attribute values themselves. Any number of attributes can be assigned to

either a Vdata or any field within a Vdata, as long as they are named

uniquely.

One use of HDF attributes is to define units for the fields. For instance,

the "min" field could have an attribute with name="UNITS", data-type= char,

num_of_values=7, and values="minutes".

Another use of attributes would be to define the offsets for the

count-rates. Since we have chosen to contain the offsets in a 12-element

array, the array could have an attribute with name="OFFSETS",

data-type=int16, num-of-values=12, and values=0,5,10,15,...

At this point, we have to trust that the user figures out the units for the

offsets...can we have an attribute of an attribute?!

One could define OFFSET attributes with value=0 for sc_location and density,

but I'm not sure if that would confuse or clarify things...I think the Vdata

annotation is adequate information for the user.

--

4.5 IDFS
First, let's start by saying that there are various ways in which this

data can be stored under IDFS. I am sure that this is true for other formats

as well. Under IDFS, you store the RAW data and the procedures to convert

that raw data into geophysical quantities. That is not to say that computed

data cannot be stored under IDFS; it is simply that the strength of IDFS is

in the ability to modify the procedure for data conversion into physical units

without the need to re-process all data sets since the raw data is what

is stored.

With IDFS, data is grouped into logical (or virtual) instruments. A

virtual instrument is a group of sensors which are linked together by

commonality; therefore, it makes sense to treat the sensors together.

It looks like there are three different types of data here, the s/c

location (which are three scalar values), the instrument scan consisting

of 12 elements, and a scalar processed value, density, with different timing.

It is a guess that the spacecraft location and instrument scan are

measurements with discrete values. These data values should be stored in

their raw form and the IDFS should contain the necessary descriptions for

converting the stored data numbers into geophysical numbers (generated by

the creator). Assuming this is not correct, but that these are all computed

quantities, they can be stored as is within IDFS as data.

One possible scheme would be to subdivide the data into 3 logical instruments,

which I will refer to as (1) position, (2) instrument, and (3) density. In

the IDFS paradigm, each data set is written into two types of files: the

header file (H) and the data file (D). Using the prescription as laid out,

one year of data at one day per file would result in the following number of

files:

IDFS data files = 3 logical instruments * 365 days in year = 1095

IDFS header files = 3 logical instruments * 365 days in year = 1095

IDFS VIDF files = 3 logical instruments = 3

Total = 1095 + 1095 + 3 = 2193 files

where the VIDF file is the ASCII description file of what is stored in the

data and header files. File names link the proper Header and Data files

together. The header files contain slowly changing information like TIMING

and DATA QUALITY, so I am going to estimate 1 header record for each header

file since the data is being stored into files on a day boundary.

For word 1, the time tag in the format, YYYYDDDtHHMM, the value would be

broken down into 3 values: (1) 4 digit year value, (2) julian day of year

value (1 to 365 (366)), (3) time of day in milliseconds resolution. The

first two quantities would be placed in the header record associated with

each of the 3 logical instruments. The third value would be placed in the

data record associated with each of the 3 logical instruments.

Word 2, s/c location, would only be placed into the data record for the

position logical instrument. The location values are probably instantaneous

values determined at the time tag, with all three components determined

simultaneously. The timing information stored in the header record for these

data values would describe a data accumulation value of zero and a data

latency value of 1 minute (this is the time between successive data samples).

The VIDF file would describe 3 scalar sensors taken in parallel, each being a

floating point real number. Since there isn't that much s/c location data,

you could repackage the data into one hour or one day data records instead of

one minute data records.

Words 3 - 14, count rates, would only be placed into the data record for

the instrument logical instrument. For this data set, I am making the assumption

that all twelve measurements are functions of a single parameter, that being

energy. This assumption is based off the wording "1st of 12 energy steps". Based

on this assumption, the data would describe a single sensor coming from an IDFS

"vector" instrument. A vector instrument is an instrument whose sensors, or data

products, represent multivalue (1-D) data sets that have known functional

dependencies other than time or position, i.e., a particle spectrometer which

returns counts as a function of energy. The length of this 1-D array would be

defined as 12 for this logical instrument. What seems to be missing from the

description of this data set is what energies these count rates depend on. So,

I will assume that they will be an index labeled 0 through 11, to give 12 values,

which will be placed in the header record within the header file. The data have

an accumulation period which is not known and a data latency which is not known, only

that the sum of the accumulation and latency is 5 sec. In the VIDF file, the data will

described as 4-byte integers and there are 12 elements in a vector scan.

Note that if you wanted, you could just store the count rather than the

rate and let the IDFS compute the rate. If this were true, In the VIDF file,

a table could be specified to generate the energy value given the sequence

number. I assume that the time of day value written in the data file is the

start of the accumulation time of the first element of data in a data record.

If the 12 values are not functions of a single parameter, but rather 12 distinct

measurements, then the data would describe twelve IDFS sensors coming from an IDFS

"scalar" instrument. A scalar instrument is an instrument whose sensors, or data

products, represent a set of singular data values that are dependent only upon time

and position, i.e. a housekeeping temperature monitor. The VIDF would describe

twelve scalars taken in parallel, and the time offsets (0, 5, ... 55) would be

placed in the VIDF file and utilized when the time tag for each individual sensor

is computed.

Word 15, density, would only be placed into the data record for the density

logical instrument. The density header file has one sensor defined with a

data accumulation value of 60 seconds and a data latency value of zero seconds.

The VIDF file defines one sensor, that is a real value which is 4-bytes long.

Since the density is highly processed data, this is probably the best way to

store this data. The 4-byte values are probably not easily converted into

something which can pack better. When generating the density data

time tag, the time tag is the start of the data accumulation time.

Writing only one data set per data record is a poor way to save the density

data. First, I assume that if there is missing instrument data, then there

is no density data. Since there is one value per data record, you could

just not write that record, so there will be a gap which can be handled by

IDFS. However, the recommendation I make is writing the density in hour

records, or 60 values per data record. You could define a fill value which

you could put in place of bad or missing values. Another alternative is to

pack the entire day of data into one record of 3600 elements.

4.6 FITS

Below is an example of the model data might be stored using a FITS binary table. I've probably got a few keywords incorrect, but this should give the general flavor. The FITS binary table format is really the only one that meets the model data requirements, but it handles that data relatively easily. I've put in some additional keywords that we would typically supply to define the measurements more precisely.

Note that there are really two distinct questions that we can ask about formats and this only addresses one. We can ask: Given a binary dataset, can (and how does) a given data system describe this sequence of bytes. However I think it is more interesting to understand whether a given dataset can represent the semantics of a given logical data stream .i.e., in this case I don't know that it matters whether we can represent the exact 76 byte records of the model data. What matters -- I think -- is the ability to meet his requirements on the stream: missing data, implicit offsets between the rates elements, ability to define whether the specified time specifies the beginning, middle or end of an interval... That's why I added a few keywords in the example with address just a few more of these semantics: what are the units of the positions, what time system is being used, what is the error in the time measurements, is this a time at the spacecraft or when received at the ground station, ...

--- Binary Table Header ---

XTENSION= 'BINTABLE' / FITS binary table

BITPIX = 8 / Mandatory value

NAXIS = 2 / Mandatory value

NAXIS1 = 76 / Number of bytes per row

NAXIS2 = 1440 / Number of rows (for a full day)

PCOUNT = 0 / No variable length data

GCOUNT = 1 / Mandatory value

TFIELDS = 6 / Number of distinct fields in table

EXTNAME = 'RATE '

HDUCLASS= 'OGIP ' / Conforms to OGIP/HEASARC standards.

HDUCLAS1= 'LIGHTCURVE'

HDUCLAS2= 'RAW '

HDUCLAS3= 'RATE '

TTYPE1 = 'TIME ' / Time in YYYYDDDtHHMM format

TTYPE2 = 'X ' / Spacecraft X position at time

TTYPE3 = 'Y ' / Spacecraft Y position at time

TTYPE4 = 'Z ' / Spacecraft Z position at time

TTYPE5 = 'RATES ' / Rate array

TTYPE6 = 'DENSITY ' / Averaged rate array.

TFORM1 = '12A ' / 12 ASCII characters

 -- Using the HEASARC FITS recommendations we would not store time

 -- in this format but as a double precision number in seconds

 -- (or other unit specified below in TIMEUNIT) from some reference

 -- time.

TFORM2 = 'E ' / 4 byte float

TFORM3 = 'E ' / 4 byte float

TFORM4 = 'E ' / 4 byte float

TFORM5 = '12J ' / 12 4 byte integers

TFORM6 = 'E ' / 4 byte float

TUNIT2 = 'km ' / Kilometers from solar barycenter.

TUNIT3 = 'km ' /

TUNIT4 = 'km ' /

TUNIT5 = 'count/s '

TDIM1 = '(12) ' / Dimensionality of element.

TDIM5 = '(12) ' / Dimensionality of element.

TCRTYP5 = 'TIME ' / Column is a function of time.

TCRREF5 = 0.5 / Reference time is at beginning

 of first bin (0.5-1.5 in FITS)

TCDELT5 = 5 / Spacing between bins (in TIMEUNIT)

TIMEUNIT= 's ' / Unit used in time information

 other than ASCII Time column

TIMESYS = 'MJD ' / But this really wants a numeric time column!

TIMEREF = 'SPACECRAFT' / Reference location for timing

TIERABSO= 0.34 / Seconds (Absolute timing accuracy)

....

END
4.7 HDF5
Here is an implementation of the model data in HDF5

Time group {

Time1 - Time array for the particles of energy step 1

Time2 -

 .

 .

 Time12 -

}

S/C location group {

{

x, y, z - array of S/C location

}

Channel group {

Species1 {

Attribute

Species Name 2

Energy range 2

Data

Symbolic link to Time1

Symbolic link to S/C location

Count rates array

}

…

Species 12 {

Attribute

Species Name 12

Energy range 12

Data

Symbolic link to Time2

Symbolic link to S/C location

Count rates array

}

Density 1 {

Attribute

Name 1

Data

 Symbolic link to Time 1

 Symbolic link to S/C location

 Density 1 array

}

….

Density 11 {

Attribute

Name 11

Data

 Symbolic link to Time 11

 Symbolic link to S/C location

 Density 11 array

}

}

Time1, … to Time 12 array are created specifically each particles types. Thus offset is taken care with Time1 to Time 12. This method will increase the data volume. However, with compression algorithm included, the repetitive nature of year and hour number, the actual physical disk size is not significantly increased. The nice thing about this it takes care of the time offset. In addition, in most real particle instruments, the operation mode changes from time to time and thus the time offset may change also.

The example that you have shown is the simplest form of the EPD. The data is in compact format that is used primary by the instrument team. Historically, disk space is expensive, and that information regarding energy bandwidth and time offset are kept in the software used by the instrument team. Thus, the data is not readily usable by anyone outside the instrument team. The actual representation of high resolution EPD is much complicated than this. However, the concept is the same as shown above.

4.8 PDS Labels
Here is a ODL description of the time series. Some notes:

1. This data file will be different if it is generated on a Sun or a Mac vs a PC or VAX. Thus the IEEE_REAL and MSB_INTEGER data types indicate explicitly the binary value format.

2. Interestingly ODL allows a multi-valued vector data type in ODL statements (vector = (value,value,value)) but we do not have a multi-valued data type for column values for tables or series. So the position vector has to be handled as three separate fields.

3. The count rate is handled as a column with 12 items and the items have a sampling parameter of 5 seconds each.

pds_version_id = PDS3

object = series

columns = 17

interchange_format = binary

row_bytes = 76

rows = UNK

sampling_parameter_interval = 1

sampling_parameter_name = time

sampling_parameter_unit = minute

object = column

name = time_tag

description = "record time_tag"

bytes = 12

data_type = ASCII

start_byte = 1

end_object = column

object = column

name = sc_location_x

description = "x component of spacecraft location."

bytes = 4

data_type = IEEE_REAL

start_byte = 13

end_object = column

object = column

name = sc_location_y

description = "y component of spacecraft location."

bytes = 4

data_type = IEEE_REAL

start_byte = 17

end_object = column

object = column

name = sc_location_z

description = "z component of spacecraft location."

bytes = 4

data_type = IEEE_REAL

start_byte = 21

end_object = column

object = column

name = count_rate

description = "hypothetically instantaneously determined count rate at 12

energy steps, determined at the record's time tag for the first count_rate

with count_rates rates determined at 2rd-12th energy 2-12 steps, each

offset by 5 sec from measurement of prior step."

items = 12

item_bytes = 4

data_type = MSB_INTEGER

start_byte = 25

sampling_parameter_name = time

sampling_parameter_unit = seconds

sampling_parameter_interval = 5

/* or should the sampling parameter be the energy steps??? */

end_object = column

object = column

name = density

description = "determined from rates 1-12 by taking moments of

distribution function."

bytes = 4

data_type = IEEE_REAL

start_byte = 73

end_object = column

end_object = series

5.0 Time-series API

This section describes possible Application Programming Interfaces (APIs) that can be used to accommodate the Time Series Object (TSO) requirements defined in sections 2 and 3.

An Object Oriented (OO) approach is employed in designing the APIs with the following requirements and assumptions:

 - Support simultaneous access to multiple TSOs.

 - Data is organized and stored as described in Figure 1 (Time-Series Object Conceptual View) of Don’s TSO paper.

 - The size of each TSO record is same (a simplifying, but common, occurrence)
5.1 Application Programming Interfaces (APIs)

Each API returns a status code of Integer*4 to indicate whether the API is successfully completed. If the API is not successfully completed, it should return a negative number. Otherwise it should return the status code value of greater than 0 to indicate the successful completion of the API. Status codes and their explanation texts are not documented in this document since they can vary from implementation to implementation. The following describes the meaning for each of the data types used in the APIs.

Data Type
Description

String
A character string that has one or more characters

Integer*4
4-byte signed integer

Real*4
4-byte floating point number

Void
Data type used to represent any of the data types described above. This data type is used to send or receive data to/from an API and is equivalent to ‘void’ in C, ‘equivalence’ in Fortran, and ‘Object” in Java.

TSO Record Handling APIs

· CreateTSO

· GetTSO

· DeleteTSO

· GetNumTSORecs

· GetTSORecSize

TSO Field Handling APIs

· CreateTSOField

· AddTSOField

· GetTSOFieldData

· AddKeyTime

· GetKeyTime

· GetFieldData

· GetProcessingDuration

· GetTimeRelationship

· GetTimeOffset

· GetTSOFieldId

· GetStartTime

· GetEndTime

· GetTSOFieldNames

· GetNumTSOFields

CreateTSO (String name, Integer*4 TSOid)

It creates a TSO.

PARAMETERS:

name
String
In – the name of the TSO to be created.

TSOid
Integer*4
Out – the identifier of the TSO just created.

RETURNS:

status
Integer*4
Status code.

GetTSO (String name, Integer*4 TSOid)

It returns the TSO ID for the given TSO.

PARAMETERS:

name
String
In – the name of the TSO to be retrieved.

TSOid
Integer*4
Out – the identifier of the given TSO.

RETURNS:

status
Integer*4
Status code.

DeleteTSO (Integer*4 TSOid)

It deletes a TSO. All information associated with this TSO will be deleted (e.g. field data, key time, processing duration and time relationship, etc.).

PARAMETERS:

TSOid
Integer*4
In - the id of the TSO to be deleted.

RETURNS:

status
Integer*4
Status code.

CreateTSOField (String name, Void data, Real*4 procDuration,

String timeRelationship, Real*4 timeOffset,

Real*4 fieldId)

It creates a TSO record field.

PARAMETERS:

name
String
In - the name of the TSO record field to be created.

data
Void
In – the data values to be added to this field. The data can be a scalar, 1-dimensional array, or multi-dimensional array of any data type.

procDuration
Real*4
In - processing duration.

timeRelationship
String
In – the relationship of this field to the key time. It should be one of the following values:

 ‘start of duration’

 ‘middle of duration’

 ‘end of duration’

timeOffset
Real*4
In – time offset from the key time.

fieldId
Integer*4
Out - the identifier of the TSO field just created.

RETURNS:

status
Integer*4
Status code.

AddTSOField (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId)

It attaches a TSO field to the given record number. Field data, time offset, processing duration, and time relationship are attached.

PARAMETERS:

TSOid
Integer*4
In - the TSO id to which this field is attached.

recNum
Integer*4
In – the record number to which this field is attached.

fieldId
Integer*4
In - the field id to be attached.

RETURNS:

status
Integer*4
Status code.

GetTSOFieldData (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

Void data, Real*4 procDuration, String timeRelationship,

Real*4 timeOffset)

It returns the information for the given field id and record number. Field data, time offset, processing duration, and time relationship are returned.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which field information is retrieved.

recNum
Integer*4
In – the record number from which field information is retrieved.

fieldId
Integer*4
In - the field id from which field information is retrieved.

data
Void
Out – data values for the given field id. Data is returned in a series of bytes, and it’s user’s responsibility to map the returned bytes into an appropriate data type.

procDuration
Real*4
Out - processing duration.

timeRelationship
String
Out – the relationship of this field to the key time that is one of the following values:

 ‘start of duration’

 ‘middle of duration’

 ‘end of duration’

timeOffset
Real*4
Out – time offset from the key time.

RETURNS:

status
Integer*4
Status code.

AddKeyTime (Integer*4 TSOid, Integer*4 recNum, Void keyTime)

It attaches a key time to the given record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id to which this key time is attached.

recNum
Integer*4
In – the record number to which this key time is attached.

keyTime
Void
In – the key time for this record.

RETURNS:

status
Integer*4
Status code.

GetKeyTime (Integer*4 TSOid, Integer*4 recNum, Void keyTime)

It returns the key time to the given record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which key time is retrieved.

recNum
Integer*4
In – the record number from which key time is retrieved.

keyTime
Void
Out – the key time for the given record number.

RETURNS:

status
Integer*4
Status code.

GetFieldData (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

Void data)

It returns the data for the given field id and record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which field information is retrieved.

recNum
Integer*4
In – the record number from which field information is retrieved.

fieldId
Integer*4
In - the field id from which field information is retrieved.

data
Void
Out – data values

RETURNS:

status
Integer*4
Status code.

GetProcessingDuration (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

Real*4 procDuration)

It returns the processing duration for the given field and record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which field information is retrieved.

recNum
Integer*4
In – the record number from which field information is retrieved.

fieldId
Integer*4
In - the field id from which field information is retrieved.

procDuration
Real*4
Out - processing duration.

RETURNS:

status
Integer*4
Status code.

GetTimeRelationship (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeRelationship)

It returns the time relationship of the key time for the given field and record number.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which field information is retrieved.

recNum
Integer*4
In – the record number from which field information is retrieved.

fieldId
Integer*4
In – the field id from which field information is retrieved.

timeRelationship
String
Out – the relationship of this field to the key time that has one of the following values:

 ‘start of duration’

 ‘middle of duration’

 ‘end of duration’

RETURNS:

status
Integer*4
Status code.

GetTimeOffset (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset)

It returns the time offset from the key time for the given field and record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which field information is retrieved.

recNum
Integer*4
In – the record number from which field information is retrieved.

fieldId
Integer*4
In - the field id from which field information is retrieved.

timeOffset
Real*4
Out – time offset from the key time.

RETURNS:

status
Integer*4
Status code.

GetTSOFieldId (String name, Integer*4 fieldId)

It returns the field id for the given TSO field name.

PARAMETERS:

name
String
In – the name of .the TSO field

fieldId
Integer*4
Out – the field ID for the given field name

RETURNS:

status
Integer*4
Status code.

GetTSORecSize (Integer*4 TSOid, Integer*4 recSize)

It returns the record size the given TSO.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which the record size is determined

recSize
Integer*4
Out – the record size for the given TSO

RETURNS:

status
Integer*4
Status code.

GetTSOFieldNames (Integer*4 TSOid, String[] fields, Integer*4 numFields)

It returns the TSO field names defined for the given TSO. It also returns the number of TSO fields in the specified TSO.

PARAMETERS:

TSOid
Integer*4
In – the id of the TSO from which data is retrieved.

fields
String[]
Out – an array that contains the TSO field names for the given TSO.

numFields
Integer*4
Out – the number of TSO fields in the specified TSO

RETURNS:

status
Integer*4
Status code.

GetNumTSOFields (Integer*4 TSOid, Integer*4 numFields)

It returns the total number of TSO fields defined for the given TSO.

PARAMETERS:

TSOid
Integer*4
In – the id of the TSO from which data is retrieved.

numFields
Integer*4
Out – the number of fields defined for the given TSO

RETURNS:

status
Integer*4
Status code.

GetNumTSORecords (String TSOid, Integer*4 numRecs)

It returns the total number of TSO records in the given TSO.

PARAMETERS:

TSOid
Integer*4
In - the id of the TSO from which the total number of records is retrieved.

numRecs
Integer*4
Out - the total number of records in the given TSO

RETURNS:

status
Integer*4
Status code.

GetNumTSORecs (String TSOid, Void startTime, Void endTime, Integer*4 numRecs)

It returns the number of TSO records between the given start key time and the end key time.

PARAMETERS:

TSOid
Integer*4
In - the id of the TSO from which the total number of records is retrieved.

startTime
Void
In – start key time

endTime
Void
In – end key time

numRecs
Integer*4
Out - the number of records between the start key time and the end key time

RETURNS:

status
Integer*4
Status code.

GetStartTime (String TSOid)

It returns the start key time for the given TSO. This time is the key time retrieved from the first record.

PARAMETERS:

TSOid
Integer*4
In - the id of the TSO from which the start key time is retrieved

keyTime
Void
Out – the key time of the first record

RETURNS:

status
Integer*4
Status code.

GetEndTime (String TSOid)

It returns the end key time for the given TSO. This time is the key time retrieved from the last record.

PARAMETERS:

TSOid
Integer*4
In - the id of the TSO from which the end key time is retrieved

keyTime
Void
Out – the key time of the last record

RETURNS:

status
Integer*4
Status code.

time

Key Time

Field 'x'

Processing

Duration

Field 'y'

Processing

Duration

Field 'z'

Processing

Duration

Field 'x' Time Offset

Field 'y' Time Offset

Field 'z' Time Offset

Figure 2: Time Relationships Example

Key Time

Field 1

Field 1 Time

Offset

Field 1

Processing

Duration

Field 1 Time

Relationship

Field 2

Field 2 Time

Offset

Field 2

Processing

Duration

Field 2 Time

Relationship

Etc.

Field m

Field m Time

Offset

Field m

Processing

Duration

Field m Time

Relationship

TSO Record 1

