A Possible Time-Series Object

Don Sawyer, David Han, Mike Martin, Teck Choo, Andrew Davis, Tom McGlynn, Carrie Gonzalez and Formats Evolution Process Committee

00-06-26

1. Objectives and Approach

The purpose of this paper is to identify a possible definition for a general time-series data object, and to explore some of the implications for its implementation in several different formats that have been used for multiple science data sets.
If this is viewed to be a useful thrust, there could be a subsequent time-series data object standardization effort that should result in the following benefits:

1. Data product developers will know what metadata is needed to support the standard time-series view of their data, and including it will enable new data products to be more readily accessible to researchers using existing application software.
2. There can be a set of standard interfaces supported by formatting system software (e.g., possible extensions to, or built on top of, HDF, CDF, IDFS), which then allows applications to work in a standard way with time series data from a variety of instruments and across disciplines.

3. The understanding of the time aspects of data made available as a time-series object will already be known to data users/researchers and will therefor reduce their learning time in handling new data products.

The FEPC is pursuing a draft 'time-series' object to demonstrate the feasibility and utility of pursuing this type of standardization. The FEPC does not expect its work to be a standard, but to point the way if this proves productive.
1.1 How to Read the Document

A time-series object (TSO) can not do all that anyone might want. Each potential user may have some favorite requirements to be fulfilled. Necessarily a particular conceptual view of the important aspects of a TSO are needed. This is presented in section 2 and should be of interest to all readers. Then, a list of questions that a TSO might be expected to be able to answer is postulated in section 3. In other words, from an application point of view, what inputs should one be able to give it and what type of results should one expect to be able to get back? Our approach focuses on a minimum set of time-related services, but allows additional services to be added as needed. This helps identify the minimum metadata that is needed for a TSO and should be of interest to all readers. A full standardization effort would flesh this out more thoroughly. Section 4 provides some examples of how a TSO might be implemented using some well known formats. Those who are familiar with one or more of these formats may be especially interested to see the implications of the approaches taken. Section 5 provides views of how various APIs for a TSO may appear. First it provides a view of a set of low level APIs that allow programmers to manipulate the TSO and the various fields that comprise it. Then, a high level API is provided that supports directly finding the answers to the key questions identified in section 3. Section 5 is particularly interesting to those who implement access software, and those who would be interested in using such TSO specific software.
2. Time-Series Object Conceptual View

It is important to note that the material to follow provides a conceptual view and is not an implementation. How the necessary information is actually organized and stored is not addressed.

Figure 1: Time-Series Object Conceptual View

1. A Time-Series Object appears (conceptually) as a sequence of records, as shown in Figure 1. (Note: It may not be implemented as a simple sequence of records.)
2. Each record contains a 'key time' value (including date), which is monotonically increasing or decreasing from record to record.

3. Each record also contains other data, of arbitrary complexity, which may vary from record to record. This data can be viewed as a sequence of fields, but may also be viewed as groups of fields which map to various types of objects such as images, vectors, matrices, etc. It is not necessary to call out all detailed structure, so that a whole image may be viewed as one field if so desired.

4. Each record also contains one or more 'processing durations'. Each such processing duration gives the time span over which one or more of the other data fields has been determined. For example, a data field may be a 1 minute average of other values, in which case the 'processing duration' would be 1 minute. It may, of course, be zero as well. The 'processing duration' is known for all data fields, identified as such, in the time-series object.

5. Each record also contains one or more 'time offset' values. Each data field has a time offset value which relates, through the use of addition, its time of observation/determination to the record's key time value.

6. The relationship of the key time, plus time offset, to each fields processing duration is known because either it is given explicitly or it is a part of the standard. Possible relationships include:

 - For each subset of the data fields, the key time, after being augmented with the relevant time offset value, corresponds to the beginning, the middle, or the end of the associated processing duration value. Figure 2 below is an example where the offset is to the middle of the processing duration for data fields 'x' and 'y', but to the beginning of the processing duration for data field 'z'.

 - Other ways to define the relationships are possible, but are not explored here.

7. The meaning of each field, including key time, processing durations, time offsets, and data is known and described. This is a general requirement intended to ensure that the information that comprises the TSOis at least minimally understandable.

3. Questions to be Supported by the Time-series Object

These questions can be viewed as motivating the necessary data or metadata to be available as a part of the time-series object, and/or as suggesting the types of values that an API might require.

3.1 Proposed Required Questions for Any Data Object

1. What are the fields available (when looking across all the records)? (Give names)

2. What is the definition of field 'x'.

3. What is the representation type for field 'x' (e.g., integer, real, image array, character string)

4. What are the units for field 'x'?

3.2 Proposed Required Questions for Time-series Object

1. What is the meaning of the key time as used in this object?

2. What is the start date/time and what is the end date/time for this object?

3. What is the processing duration for data field 'x'?

4. What is the offset time for data field 'x'?

5. How does the offset time relate to the processing duration for data field 'x'? (e.g., 'mid point')

6. Get the records between time a and time b.

7. Get the values for fields 'x' and 'y' for the key time between time a and time b.

3.3 Proposed Optional Questions for Time-series Object

1. Get the values for fields 'x' and 'y' for their times between a and b.

2. How many records exist between time a and time b?

3. How many bytes exist between time a and time b?

4. What is the maximum record size in bytes?

5. How many records in the object?

6. How many unique data fields are present in the object?

4. Example Implementations

In order to clarify both conceptual and practical issues, this section provides some examples of how a TSO might be implemented using a few data formats. For illustrative purposes, a model data set is defined and then mapped into the TSO conceptual view.

4.1 Model Data Set

The data set consists of the following:

· One year of data.

· One day of data per data file.

· One minute of data in each data record.

· Gaps in the data, where minutes with no data have no records.

The data in the record are:

Word Meaning Comments

1. time tag say, YYYYDDDtHHMM

2. s/c location X,Y,Z vector at time of time tag

3. count rate 1 hypothetically instantaneously determined

 count rate at 1st of 12 energy steps,

 determined at the record's time tag

4.-14. count rates rates determined at 2rd-12th energy

 2-12 steps, each offset by 5 sec from

 measurement of prior step

15. density determined from rates 1-12 by taking

 moments of distribution function.

Word 1 is ASCII, word 2 is (3x)R*4, words 3-14 are I*4, and word 15 is R*4.

Relative to offsets from the record's time tag, words 3-14 have offsets of 0, 5, 10, ... 55 sec. For word 15 the record's time tag designates the start time (not mid or end or other time) for word 15's "processing interval."

4.2 Partial Mapping to the Time Series Object View

The model data set of section 4.1 is mapped to a TSO view. Where the processing duration is zero, the relationship of the duration to the associated time is arbitrarily set to 'Begin of Duration' .

TSO record = data set record

TSO = sequence of TSO records, covering the year (Note: Gaps in the data result in gaps in the TSO record sequence.)

Time Order = ordered with increasing values of the time tag

Key Time = time tag

TSO Field Matrix:

Field Name Offset Int. Processing Duration Relationship of time

 To Proc. Duration

---------- ---------- ------------------- -----------------

S/C Location

 X value 0 sec 0 sec "Begin of Duration"

 Y value 0 0 "Begin of Duration"

 Z value 0 0 "Begin of Duration"

Count Rate 1 0 sec 0 sec "Begin of Duration"

Count Rate 2 5 sec 0 sec "Begin of Duration"

Count Rate 3 10 sec 0 sec "Begin of Duration"

.

.

.

Count Rate 12 55 sec 0 sec "Begin of Duration"

Density 0 sec 55 sec "Begin of Duration"

4.3 CDF (Common Data Format)
The model data set is implemented using CDF's Variables and Attributes.

Variable is an entity that represents/contains data, and attribute is the

mechanism for storing metadata. There are two types of attributes in CDF:

global and variable. Global attributes are used to describe a CDF

file/data set (e.g. data set creator, file history, etc.) and to hold

values that are common/global to the data set. Similarly, variable

attributes are used to describe or provide additional information about

variables. One or more variable attributes can be attached to a variable.

For example, a variable can have MIN and MAX attributes to represent the

minimum and maximum values allowed for this variable, and it can have a text
description of the variable.

A CDF file can be created either by writing a program using CDF Application

Prgramming Interfaces (APIs), creating a CDF skeleton table, or using the

CDFedit interactive CDF editor. The easiest way to create a CDF file is by

creating a CDF skeleton table that is an ASCII text file template in which

one can define variables, atrributes, and other information such as file

and variable compression methods to be used, text description of the CDF

file/data set, data encoding scheme, and etc. SkeletonTable, one of the

CDF tools distributed as part of the standard CDF distribution package,

creates a skeleton table from an existing CDF file. Since the model data

set is simple and only requires Variables and Attributes for

implementation, a simple CDF file (test.cdf) that contains variables,

attributes, and a few global atributes about the data set is selected (to

minimize editing), and a skeleton table is generated using the following

command at the operating system prompt:

 skeletontable test.cdf

The above command produces a file called test.cdf.skt. The test.cdf.skt

file is edited using an ASCII text editor to include the variables and

attributes that are needed for the model data set. The edited skeleton

table is then fed into the SkeletonCDF utility, another CDF tool

distributed as part of the standard CDF distribution package, to generate

the CDF file called TSO.cdf that contains the Time Series Object (TSO)

model data set. The following command is used to generate the final CDF

file:

 skeletoncdf -cdf TSO.cdf test.cdf

The file extension of .ext is not required when specifying the input file

name that is supplied to the SkeletonCDF utility to generate the TSO.cdf

file.

Below is a skeleton table that implements the model data set with the

following assumptions:

- Time offset doesn't vary from record to record.

- Processing duration doesn't vary from record to record.

- Time relationship doesn't vary from record to record.

- Key time and count rates vary from record to record.

- Fill data is used for missing data.

Variables YYYY, DDD, HH, and MM are used to store 'key time' values.

Variables SCLocation, CountRates, and Density represent the spacecraft

location, count rate at each of 12 energy steps, and density that is

determined from 12 count rates, respectively. Global attributes are used

to describe the creator of the CDF file (TSO.cdf), to provide a brief

description of this CDF file, and to further describe some variable

attributes (e.g. gTimeOffset, gProcessingDuration, etc.). Since the key

time variables (YYYY, DDD, HH, MM) are self-explanatory, no attributes

(metadata) are defined for these variables.
(Editor's Note: To be complete, the reference system, such as UTC, needs to be given and is part of the definition of what is mean by 'time'. I'd like to see at least a definition attribute, and units attribute, for each variable.) The rest of the variables are

not independent or complete by themselves, and variable attributes are

used to further describe these variables. The following mapping describes

what variable attributes are used for each of the variables.

 Variable Name Attribute Name

 ------------- --------------

 SCLocation Description

 TimeOffset

 ProcessingDuration

 TimeRelationship

 CountRate Description

 TimeOffset

 TimeIncrement

 ProcessingDuration

 TimeRelationship

 Density Description

 TimeOffset

 ProcessingDuration

 TimeRelationship

The variable attributes described above except for Description are also not

complete by themselves and need additional information. For example,

there's no information about what the units of ProcessingDuration is;

there's no information about what the valid values are for the

TimeRelationShip attribute; and so on. The following global attributes are

used to further describe these variable attributes:

 Variable Attribute Name Global Attribute Name

 ----------------------- ---------------------

 TimeOffset gTimeOffset

 TimeIncrement gTimeIncrement

 ProcessingDuration gProcessingDuration

 TimeRelationship gTimeRelationship

The logical CDF record, once the model is implemented, consists of the

following fields: key time (keyTime), spacecraft location (SCLocation),

count rates(countRates), density (Density). Note that the global and

variable attributes are not part of the logical CDF record. With CDF,

users can store and retrieve the entire, or a portion, of the logical CDF
record at a time.

! Skeleton table for the "TSO.cdf" CDF.

! Generated: Friday, 19-May-2000 09:56:14

! CDF created/modified by CDF V2.7.0

! Skeleton table created by CDF V2.7.0b

#header

 CDF NAME: TSO.cdf

 DATA ENCODING: IBMPC

 MAJORITY: ROW

 FORMAT: SINGLE

! Variables G.Attributes V.Attributes Records Dims Sizes

! --------- ------------ ------------ ------- ---- -----

 0/7 6 5 0/z 0

#GLOBALattributes

! Attribute Entry Data

! Name Number Type Value

! --------- ------ ---- -----

 "Project" 1: CDF_CHAR { "TSO Implementation in CDF" } .

 "Author" 1: CDF_CHAR { "David Han" }

 2: CDF_CHAR { "NASA/GSFC" } .

 "TimeOrder" 1. CDF_CHAR { "Increasing" }
 "gTimeOffset" 1: CDF_CHAR { "Time offset from key time" }

 2: CDF CHAR { "UNIT = Seconds" }

 3: CDF_CHAR { "ATTR = TimeOffset" } .

 "gTimeIncrement" 1: CDF_CHAR { "Time increment/offset for each

of the 12 count rates" }

 2: CDF CHAR { "UNIT = Seconds" }

 3: CDF_CHAR { "ATTR = TimeIncrement" } .

 "gProcessingDuration" 1: CDF_CHAR { "Processing duration time" }

 2: CDF CHAR { "UNIT = Seconds" }

 3: CDF_CHAR { "ATTR = ProcessDuration" } .

 "gTimeRelationship" 1: CDF_CHAR { "Valid time relationship values"}

 2: CDF CHAR { "ATTR = TimeRelationship" }

 3: CDF CHAR { "VALID = start of duration |" }

 4: CDF_CHAR { "middle of duration |" }

 5: CDF_CHAR { "end of duration" } .

#VARIABLEattributes

 "Description"

 "ProcessingDuration"

 "TimeIncrement"

 "TimeOffset"

 "TimeRelationship"

#zVariables

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "YYYY" CDF_INT2 1 1 1 T

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "DDD" CDF_INT2 1 1 1 T

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "HH" CDF_INT2 1 1 1 T

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "MM" CDF_INT2 1 1 1 T

 . ! Terminating period required.

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "SCLocation" CDF_FLOAT 1 1 3 T T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 "Description" CDF_CHAR { "X,Y,Z vector at time of key time" }

 "TimeOffset" CDF_FLOAT { 0.0 }

 "ProcessingDuration" CDF_FLOAT { 0.0 }

 "TimeRelationship" CHF_CHAR { "start of duration" } .

! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "CountRate" CDF_INT4 1 1 12 T T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 "Description" CDF_CHAR {"Count rate at each of 12 energy steps.

Time offset for each of the 12 count rates is 5 seconds (whose value is

defined in the TimeIncrement attribute listed below) more than that for the previous rate, where the first rate occurs at the key time and has a zero

offset."}

 "TimeOffset" CDF_FLOAT { 0.0 }

 "TimeIncrement" CDF_FLOAT { 5.0 }

 "ProcessingDuration" CDF_FLOAT { 0.0 }

 "TimeRelationship" CHF_CHAR { "start of duration" } .

(Editor's note: The "TimeOffset should, logically, not be present here as

it is not consistent with its definition and usage elsewhere. The time offsets

for the 12 rates would be calculated from the time increment and the position

of the rate in it vector array. The time offset given above as an attribute

could be called 'InitialTimeOffset', and then be further defined in the

global attributes as applying to the first rate in the rate vector.)
! Variable Data Number Record Dimension

! Name Type Elements Dims Sizes Variance Variances

! -------- ---- -------- ---- ----- -------- ---------

 "Density" CDF_FLOAT 1 1 1 T

 ! Attribute Data

 ! Name Type Value

 ! -------- ---- -----

 "Description" CDF_CHAR {"Density determined from 12 count rates"}.

 "TimeOffset" CDF_FLOAT { 0.0 }

 "ProcessingDuration" CDF_FLOAT { 55.0 }

 "TimeRelationship" CHF_CHAR { "start of duration" } .
 ! (Note: It would also be correct to use a time offset value of 27.5

 ! with a time relationship of 'middle of duration')
#end

NOTE:

 1. The "Record Variance" column specifies whether or not the

 variable's values change from record to record.

 2. The "Dimension Variances" column specifies whether or not the

 values change along the corresponding dimension.

 3. The "Record Variance" and "Dimension Variances" columns can

 have one of the following values:

 T - True.

 F - False

 ' ' - Blank value. This means "not applicable."

In summary, a TSO record is comprised of a CDF record containing the defined variables with their attributes, together with the CDF global attributes needed to complete the TSO record information. Note that each TSO record logically incorporates the same global attributes. The TSO record Key Time is given by the values found in the four CDF variables YYYY, MM, DDD, HH. A global attribute is used to state that the time order is 'increasing'. The TSO object is implemented as a single CDF file containing the year's data, where missing data are given some type of fill value.
4.4 HDF4 (Hierarchical Data Format, version 4)
 Time Series Object Implementation in HDF

--

Links to Background Information

 * Hierarchical Data Format (HDF) Information. The ASC is currently using

 HDFv4.1r2

--

Introduction

We attempt to describe how a Time Series Object (TSO) could be implemented

in HDF4, using the model data set described by Joe King as an example. The

model data set is reproduced here:

One year of data. One day of data per data file.

One minute of data in each data record. Gappy data -

minutes with no data have no records. The data

in the record are:

Word Meaning Comments

1. time tag say, YYYYDDDtHHMM

2. s/c location X,Y,Z vector at time of time tag

3. count rate 1 hypothetically instantaneously determined

 count rate at 1st of 12 energy steps,

 determined at the record's time tag

4.-14. count rates rates determined at 2rd-12th energy

 2-12 steps, each offset by 5 sec from

 measurement of prior step

15. density determined from rates 1-12 by taking

 moments of distribution function.

Word 1 is ASCII, word 2 is (3x)R*4, words 3-14 are I*4, and word 15 is R*4.

(Don asked me to add this format info. Hopefully how various formats would

handle offset, processing interval, and other time-specification info is

only weakly if at all dependent on such formats.)

Relative to offsets from the record's time tag, words 3-14 have offsets

of 0, 5, 10, ... 55 sec. For word 15 the record's time tag designates

the start time (not mid or end or other time) for word 15's "processing

interval."

--

Implementation of TSO in HDF Format

We'll use two HDF building blocks to implement the TSO in HDF - Vgroups and

Vdatas. Vgroups are generic grouping elements allowing a user to associate

related objects within an HDF file. As Vgroups can contain other Vgroups, it

is possible to build a hierarchical file. Vdatas are generic list objects.

Data is organized into "fields" within each Vdata. Each field is identified

by a unique "field name". The type of each field may be any of the basic

types that HDF supports. Fields of different types may exist within the same

Vdata.

For this example, Vgroups are not very important. If there were data from

several different instruments within the data file, one could define a

Vgroup for each instrument, for example. In any case, within a Vgroup we can

define a Vdata, and within the Vdata we can define the fields into which the

data is to be organized. So, there will be a correspondence between the

Vdata fields and the Words in the model data set.

An easy way to define the Vdata fields is via a C data structure. Given this

definition, a straightforward series of calls to HDF library routines is

needed to set up the Vdata, and to begin reading/writing data records

from/to a data file. This definition (including the comments) can become a

part of the data file if it is later incorporated into an Annotation of the

Vdata (see below).

struct TOS_data_1min {

 /* UT time-tag data */

 int32 year; /* integer year */

 int32 day; /* integer day of year */

 int16 hr; /* hour of day */

 int16 min; /* min of hour */

 float64 fp_year; /* floating point year */

 float64 fp_doy; /* floating point Day of Year */

 float64 ACEepoch; /* Number of seconds since 00:00:00 01-01-1996 UT*/

 float32 sc_locationX; /* X-component of S/C loc. at time tag (GSE) */

 float32 sc_locationY; /* Y-component of S/C loc. at time tag (GSE) */

 float32 sc_locationZ; /* Z-component of S/C loc. at time tag (GSE) */

 int32 count_rate1; /* count rates at each of 12 energy steps. */

 int32 count_rate2; /* Each rate is offset +5secs from the previous */

 int32 count_rate3; /* rate, with the first rate offset 0 secs from */

 int32 count_rate4; /* the time tag. If we knew the energy steps, we */

 int32 count_rate5; /* might mention them here */

 int32 count_rate6;

 int32 count_rate7;

 int32 count_rate8;

 int32 count_rate9;

 int32 count_rate10;

 int32 count_rate11;

 int32 count_rate12;

 float32 density; /* determined from the 12 rates by taking */

 /* moments of distribution function. Time tag

 /* designates the start-time of the processing

 /* interval for this item */

};

Note that the time definition above contains more fields than the model data mandated -
 that's just to indicate that there are many ways of specifying Time, some
useful for plotting routines, some for readability, etc, etc. No matter

which subset one decides upon, one is going to annoy somebody...

Note also that the S/C location and count-rates could easily be defined as

arrays. However, breaking them out into scalar quantities makes it easier to

label each item with its own metadata (see below).

In this implementation, all records will have the same length. Data gaps can

either be filled with records containing fill-data, or not...

--

Metadata (Annotations and Attributes)

We use HDF File Annotations and HDF Object Annotations and HDF Attributes to

record metadata within HDF files. Any generic HDF data browser tool worth

its salt should be able to display all annotations and attributes contained

within any HDF file.

HDF annotations are basically containers into which one can dump short text

descriptions. File annotations are used to record global information about

the dataset. For instance, at least three file annotations are attached to

each ACE Level 2 data file:

 * Data description: A general description of the data, including

 processing dates and version numbers. One would define how gappy data

 is handled here.

 * Contact Info: Instrument team contact information.

 * Release Notes: Provided by the instrument team.

Object annotations can be attached to Vgroups or Vdatas or other objects

within a HDF file. We would attach an object annotation to the TSO Vdata

which would describe the Vdata fields. The C data structure defined above

(with comments) would be a minimal starting point for this annotation.

An HDF attribute has a name, a data type, a number of attribute values, and

the attribute values themselves. Any number of attributes can be assigned to

either a Vdata or any field within a Vdata, as long as they are named

uniquely.

One use of HDF attributes would to define units for the fields. For

instance, the "min" field could have an attribute with name="UNITS",

data-type= char, num_of_values=7, and values="minutes". Another use of

attributes would be to define the offsets for the count-rates. The table

below shows the attributes we would attach to each of the fields in our time

series Vdata:

 Attributes
Field Name Units Processing Time Time Relationship
 Duration Offset

 year "years" "NA" "0 sec" "Begin of

 Duration"

 day "days" "NA" "0 sec" "Begin of

 Duration"

 hr "hours" "NA" "0 sec" "Begin of

 Duration"

 min "minutes" "NA" "0 sec" "Begin of

 Duration"

 fp_year "years" "NA" "0 sec" "Begin of

 Duration"

 fp_doy "days" "NA" "0 sec" "Begin of

 Duration"

 ACEepoch "seconds" "NA" "0 sec" "Begin of

 Duration"

 sc_locationX "km" "0 sec" "0 sec" "Begin of

 Duration"

 sc_locationY "km" "0 sec" "0 sec" "Begin of

 Duration"

 sc_locationZ "km" "0 sec" "0 sec" "Begin of

 Duration"

 count_rate1 "counts/second" "0 sec" "0 sec" "Begin of

 Duration"

 count_rate2 "counts/second" "0 sec" "5 sec" "Begin of

 Duration"

 count_rate3 "counts/second" "0 sec" "10 sec" "Begin of

 Duration"

 count_rate4 "counts/second" "0 sec" "15 sec" "Begin of

 Duration"

 count_rate5 "counts/second" "0 sec" "20 sec" "Begin of

 Duration"

 count_rate6 "counts/second" "0 sec" "25 sec" "Begin of

 Duration"

 count_rate7 "counts/second" "0 sec" "30 sec" "Begin of

 Duration"

 count_rate8 "counts/second" "0 sec" "35 sec" "Begin of

 Duration"

 count_rate9 "counts/second" "0 sec" "40 sec" "Begin of

 Duration"

 count_rate10"counts/second" "0 sec" "45 sec" "Begin of

 Duration"

 count_rate11"counts/second" "0 sec" "50 sec" "Begin of

 Duration"

 count_rate12"counts/second" "0 sec" "55 sec" "Begin of

 Duration"

 density "particles/cm3" "55 sec" "0 sec" "Begin of

 Duration"

Note that all the attributes above are implemented as character strings,

which limits their usefulness in computations. An alternative might be to

implement the offsets as integers, for example. However, then one must find

another way to communicate the units of the offsets, possibly as attributes

attached to the Vdata (i.e. one level up in the hierarchy). Such schemes

require a smart API to make proper use of them...

Some fields may need more attributes (eg. MIN and MAX limits for plotting,

or count rate energy steps). That's OK, HDF allows for different fields to

have different numbers of attributes.
In summary, each TSO record is implemented as an HDF Vdata having an object annotation giving the definitions of the fields (C data structure +) together with the five attributes above attached to each Vdata field. The TSO record Key Time could be any of the three date/time forms (integer, floating, ACE Epoch) provided. Alternate implementations are possible, but not fully explored, as noted above. A TSO object could be an HDF4 file containing the full year's data, or it could be broken into multiple TSO objects such as one HDF4 file per day. Missing data result in a missing Vdata, or could be given a fill value.
--
4.5 IDFS

There are various ways in which the model data set can be stored under IDFS,

which is probably a statement that can be made by other formats as well.

Under IDFS, you store the RAW data and the procedures to convert that raw

data into geophysical quantities. That is not to say that computed data

cannot be stored under IDFS; it is simply that the strength of IDFS is in

the ability to modify the procedure for data conversion into physical units

without the need to re-process all data sets since the raw data is what is

stored.

With IDFS, data is grouped into virtual (or logical) instruments. A

virtual instrument is a group of sensors which are linked together by

commonality; therefore, it makes sense to treat the sensors together.

There appears to be three different types of data contained in the model data

set: (1) the s/c location (which are three scalar values), (2) the count

rates consisting of 12 elements, and (3) density (a scalar processed value).

It is assumed that the spacecraft location and count rates are measurements

with discrete values. These data values should be stored in their raw

form and the IDFS should contain the necessary descriptions for converting

the stored data numbers into geophysical numbers (generated by the creator **WHAT DOES THIS MEAN? **).

If the assumption is not correct and these are all computed quantities,

they can be stored as is within IDFS as data.

One possible scheme would be to subdivide the data into 3 virtual instruments,

which are referred to as (1) POSITION, (2) COUNT_RATE, and (3) DENSITY. In

the IDFS paradigm, each data set is written into two types of files: the

header file (H) and the data file (D). File names link the proper header and

data files together. Using the prescription as laid out, one year of data

at one day per file would result in the following number of files:

IDFS data files = 3 virtual instruments * 365 days in year = 1095

IDFS header files = 3 virtual instruments * 365 days in year = 1095

IDFS VIDF files = 3 virtual instruments = 3

IDFS PIDF files = 3 virtual instruments = 3

Total = 1095 + 1095 + 3 + 3 = 2196 files

The VIDF file is a complete description of the virtual instrument. The VIDF

file provides a general description of the measurements being stored in IDFS

format, defines the mechanism ** CAN YOU EXPAND ON WHAT IS MEANT BY MECHANISH, AND/OR GIVE AN EXAMPLE?** by which information from the data and header

files can be retrieved, and contains the data reconstruction parameters that

are needed in order to transform the raw data into physical units.

The PIDF file is an ASCII file that describes how to display the data in a

meaningful way. The PIDF file defines the units that are available for each

sensor including the correct VIDF tables to apply, how they are applied and

the limits (min/max) for each set of units.

The header files contain data which, for the most part, is slowly varying

in time and need not be repeated every data record. The format of the header

record is shown below in the form of a C data structure, utilizing user-defined

data types to address the issue of porting the source code to multiple

platforms:

struct

{

 SDDAS_SHORT
hdr_len;

 SDDAS_SHORT
year;

 SDDAS_SHORT
day;

 SDDAS_CHAR
time_units;

 SDDAS_UCHAR
i_mode;

 SDDAS_LONG
data_accum; /*time over which data are accumulated*/
 SDDAS_LONG
data_lat; /*sampling period?? */
 SDDAS_LONG
swp_reset;

 SDDAS_LONG
sen_reset;

 SDDAS_SHORT
n_sen;

 SDDAS_USHORT
n_sample;

 SDDAS_SHORT
scan_index [1 or n_sample];

 SDDAS_SHORT
sensor_index [n_sen];

 SDDAS_UCHAR
d_qual [n_sen];

 SDDAS_UCHAR
mode_index [i_mode];

};

THINK WE NEED THESE ANNOTATED SO WE CAN UNDERSTAND WHAT THEY REPRESENT

where the d_qual value is an index into an array of data quality flags

defined in the VIDF file. At a minimum, each VIDF file should define

2 levels of data quality, good and bad data.

The data files contains the most rapidly varying data. The data records

contain the base time tag for the data and raw, unprocessed binary data.

Unlike the header record, the data record does not vary in size. The size

is specified in the VIDF file. The format of the data record is shown

below in the form of a C data structure, utilizing user-defined data types

to address the issue of porting the source code to multiple platforms:

struct

{

 SDDAS_LONG
dr_time; /*time in milliseconds */
 SDDAS_LONG
spin;

 SDDAS_LONG
sun_sen;

 SDDAS_LONG
hdr_off[max_nss];

 SDDAS_LONG
nss;

 SDDAS_UCHAR
data_array[data_size];

};

THINK WE NEED THESE ANNOTATED SO WE CAN UNDERSTAND WHAT THEY REPRESENT

Note that the data_array is generically assigned the data type SDDAS_UCHAR,

which is an unsigned character (8 bits). The data may be stored within the

field with a base length of 8, 16 or 32 bits. The storage boundary used for

individual data within a particular data file is determined from the VIDF file

and is used by the IDFS data access software to correctly unpack the data.

For IDFS, the data types have the following meaning:

SDDAS_INT

4-byte signed integer

SDDAS_LONG

4-byte signed integer

SDDAS_2LONGS

8-byte signed integer

SDDAS_FLOAT

4-byte floating point

SDDAS_DOUBLE

8-byte floating point

SDDAS_SHORT

2-byte signed integer

SDDAS_CHAR

1-byte signed integer or single character

SDDAS_UINT

4-byte unsigned integer

SDDAS_ULONG

4-byte unsigned integer

SDDAS_USHORT

2-byte unsigned integer

SDDAS_UCHAR

1-byte unsigned integer

For word 1, the time tag in the format, YYYYDDDtHHMM, the value would be

broken down into 3 values: (1) 4 digit year value, (2) julian day of year

value (1 to 365 (366)), (3) time of day in milliseconds resolution. The

first two quantities would be placed in the header record associated with

each of the 3 virtual instruments. The third value would be placed in the

data record associated with each of the 3 virtual instruments and would

be computed using the following algorithm:

 (HH * 3600 + MM * 60) * 1000

since the base time tag in the data record (dr_time) is expressed in

milliseconds.

Word 2, s/c location, would only be placed into the data record for the

POSITION virtual instrument. The location values are assumed to be instantaneous

values determined at the time tag, with all three components determined

simultaneously. The timing information stored in the header record for these

data values would describe a data accumulation value of zero and a data

latency value of 1 minute or 60 seconds (this is the time between successive

data samples). The VIDF file would describe 3 scalar sensors taken in

parallel, each being a floating point real number. Since there isn't that

much s/c location data, the data could be repackaged into one hour or one

day data records instead of one minute data records.

An example header record for the POSITION virtual instrument would be:

struct

{

 SDDAS_SHORT
hdr_len;

 SDDAS_SHORT
year = word 1 time tag component YYYY;

 SDDAS_SHORT
day = word 1 time tag component DDD;

 SDDAS_CHAR
time_units = 0;

 SDDAS_UCHAR
i_mode = 0;

 SDDAS_LONG
data_accum = 0;

 SDDAS_LONG
data_lat = 60000000;

 SDDAS_LONG
swp_reset = 0;

 SDDAS_LONG
sen_reset = 0;

 SDDAS_SHORT
n_sen = 3;

 SDDAS_USHORT
n_sample = 1;

 SDDAS_SHORT
scan_index[1] = {0};

 SDDAS_SHORT
sensor_index[3] = {0, 1, 2};

 SDDAS_UCHAR
d_qual[3] = {1, 1, 1};

};

Note that when the header record is written, the value for hdr_len should

be computed using a sizeof function, in which case, the value may be rounded

to the nearest word size. In the example above, the total size in bytes

(hdr_len) tallies in at 39.

An example data record for the POSITION virtual instrument would be:

struct

{

 SDDAS_LONG
dr_time = (HH * 3600 + MM * 60) * 1000;

 SDDAS_LONG
spin = 0;

 SDDAS_LONG
sun_sen = 0;

 SDDAS_LONG
hdr_off[1] = {0};

 SDDAS_LONG
nss = 1;

 SDDAS_UCHAR
data_array[3] = {x, y, z};

};

Words 3 - 14, count rates, would only be placed into the data record for

the COUNT_RATE virtual instrument. For this data set, an assumption that all

twelve measurements are a function of a single parameter, that being energy, is

made. This assumption is based on the wording "1st of 12 energy

steps". Based on this assumption, the data would describe a single sensor

coming from an IDFS "vector" instrument. A vector instrument is an instrument

whose sensors, or data products, represent multivalue (1-D) data sets that

have known functional dependencies other than time or position, i.e., a

particle spectrometer which returns counts as a function of energy. The length

of this 1-D array would be defined as 12 for this virtual instrument. What

is also needed for the description of this data set is what energies

these count rates depend on. In order to provide this information,

twelve index values, labeled 0 through 11, will be placed in the header

record within the header file. These twelve indexes will provide the ability

to link each count rate to the energy that the count rate is dependent upon.

In the VIDF file, the data will be described as 4-byte integers and there are 12

elements in a vector scan. Note that if you wanted, you could just store the

count rather than the rate and let the IDFS compute the rate. If this were

true, in the VIDF file, a table could be specified to generate the energy

value given the sequence number. It is assumed that the time of day value

written in the data file is the start of the accumulation time of the first

element of data in a data record.

An example header record for the COUNT_RATE virtual instrument would be:

struct

{

 SDDAS_SHORT
hdr_len;

 SDDAS_SHORT
year = word 1 time tag component YYYY;

 SDDAS_SHORT
day = word 1 time tag component DDD;

 SDDAS_CHAR
time_units = 0;

 SDDAS_UCHAR
i_mode = 0;

 SDDAS_LONG
data_accum = 0;

 SDDAS_LONG
data_lat = 5000000;

 SDDAS_LONG
swp_reset = 0;

 SDDAS_LONG
sen_reset = 0;

 SDDAS_SHORT
n_sen = 1;

 SDDAS_USHORT
n_sample = 12;

 SDDAS_SHORT
scan_index[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};

 SDDAS_SHORT
sensor_index[1] = {0};

 SDDAS_UCHAR
d_qual[1] = {1};

};

This data has an accumulation period which is not known and a data latency

which is not known, only that the sum of the accumulation and latency is 5 sec.

In the example header record shown above, the 5 seconds is specified in the

data latency time value, which is specified in microseconds. If all 12 count

rate values are not returned, a new header could be created and the header

record would specify the actual number of values returned and the indexes

(energy step) which correspond to the values that were returned.

For example, if 6 values were returned, that being every other value, six

indexes would be specified {0, 2, 4, 6, 8, 10}.

If the 12 values are not functions of a single parameter, but rather 12

distinct measurements, then the data would describe twelve IDFS sensors

coming from an IDFS "scalar" instrument. A scalar instrument is an instrument

whose sensors, or data products, represent a set of singular data values that

are dependent only upon time and position, i.e. a housekeeping temperature

monitor. The VIDF would describe twelve scalars taken in parallel, and the

time offsets (0, 5, ... 55) would be placed in the VIDF file and utilized

when the time tag for each individual sensor is computed.

Word 15, density, would only be placed into the data record for the DENSITY

virtual instrument. The DENSITY header file has one sensor defined with a

data accumulation value of 55 seconds and a data latency value of zero seconds.

The VIDF file defines one sensor, that is a real value which is 4-bytes long.

Since the density is highly processed data, this is probably the best way to

store this data. The 4-byte values are probably not easily converted into

something which can pack better. When generating the density data

time tag, the time tag is the start of the data accumulation time.

Writing only one data set per data record is a poor way to save the density

data. First, assume that if there is missing count rate data, then there

is no density data. Since there is one value per data record, you could

just not write that record, so there will be a gap which can be handled by

IDFS. However, the recommendation for this data set would be to write the

density in hour records, or 60 values per data record. A fill value could

be defined which could be put in place of bad or missing values. Another

alternative is to pack the entire day of data into one record of 3600 elements.

An example header record for the DENSITY virtual instrument would be:

struct

{

 SDDAS_SHORT
hdr_len;

 SDDAS_SHORT
year = word 1 time tag component YYYY;

 SDDAS_SHORT
day = word 1 time tag component DDD;

 SDDAS_CHAR
time_units = 0;

 SDDAS_UCHAR
i_mode = 0;

 SDDAS_LONG
data_accum = 55;

 SDDAS_LONG
data_lat = 0;

 SDDAS_LONG
swp_reset = 0;

 SDDAS_LONG
sen_reset = 0;

 SDDAS_SHORT
n_sen = 1;

 SDDAS_USHORT
n_sample = 1;

 SDDAS_SHORT
scan_index[1] = {0};

 SDDAS_SHORT
sensor_index[1] = {0};

 SDDAS_UCHAR
d_qual[1] = {1};

};

An example data record for the COUNT_RATE virtual instrument would be:

struct

{

 SDDAS_LONG
dr_time = (HH * 3600 + MM * 60) * 1000;

 SDDAS_LONG
spin = 0;

 SDDAS_LONG
sun_sen = 0;

 SDDAS_LONG
hdr_off[1] = {0};

 SDDAS_LONG
nss = 1;

 SDDAS_UCHAR
data_array[12] = {rate1, rate2, ... rate12};

};

An example data record for the DENSITY virtual instrument would be:

struct

{

 SDDAS_LONG
dr_time = (HH * 3600 + MM * 60) * 1000;

 SDDAS_LONG
spin = 0;

 SDDAS_LONG
sun_sen = 0;

 SDDAS_LONG
hdr_off[1] = {0};

 SDDAS_LONG
nss = 1;

 SDDAS_UCHAR
data_array[1] = {density};

};
In summary, the model data would be split into three separate TSO objects corresponding to spacecraft position, count rates, and density. Each TSO object is comprised of 4 file types (Data, Header, VIDF, PIDF) and covers one day of data. (**WHAT ARE THE OPTIONS FOR A TSO OBJECT COVERING ONE YEAR?**) The VIDF and PIDF files would be the same for each day. As shown above, a TSO record corresponds to the set consisting of a Header record, the corresponding Data record, the VIDF file and the PIDF file. The TSO record Key Time is split between the Header record (YYYY, DDD) and Data record (milliseconds of the day). Time is assumed to be increasing. (**CORRECT?**) Gaps in the data are handled by missing records, or by fill data values. The processing durations are handled by the built-in attribute 'data_accum'. The offsets are handled by the built-in attribute 'data_lat' once each TSO object is reduced to covering only position, rates, or density.
4.6 FITS

 (NEEDS REVIEW)
Below is an example of the model data might be stored using a FITS binary table. I've probably got a few keywords incorrect, but this should give the general flavor. The FITS binary table format is really the only one that meets the model data requirements, but it handles that data relatively easily. I've put in some additional keywords that we would typically supply to define the measurements more precisely.

Note that there are really two distinct questions that we can ask about formats and this only addresses one. We can ask: Given a binary dataset, can (and how does) a given data system describe this sequence of bytes. However I think it is more interesting to understand whether a given dataset can represent the semantics of a given logical data stream .i.e., in this case I don't know that it matters whether we can represent the exact 76 byte records of the model data. What matters -- I think -- is the ability to meet his requirements on the stream: missing data, implicit offsets between the rates elements, ability to define whether the specified time specifies the beginning, middle or end of an interval... That's why I added a few keywords in the example with address just a few more of these semantics: what are the units of the positions, what time system is being used, what is the error in the time measurements, is this a time at the spacecraft or when received at the ground station, ...

--- Binary Table Header ---

XTENSION= 'BINTABLE' / FITS binary table

BITPIX = 8 / Mandatory value

NAXIS = 2 / Mandatory value

NAXIS1 = 76 / Number of bytes per row

NAXIS2 = 1440 / Number of rows (for a full day)

PCOUNT = 0 / No variable length data

GCOUNT = 1 / Mandatory value

TFIELDS = 6 / Number of distinct fields in table

EXTNAME = 'RATE '

HDUCLASS= 'OGIP ' / Conforms to OGIP/HEASARC standards.

HDUCLAS1= 'LIGHTCURVE'

HDUCLAS2= 'RAW '

HDUCLAS3= 'RATE '

TTYPE1 = 'TIME ' / Time in YYYYDDDtHHMM format

TTYPE2 = 'X ' / Spacecraft X position at time

TTYPE3 = 'Y ' / Spacecraft Y position at time

TTYPE4 = 'Z ' / Spacecraft Z position at time

TTYPE5 = 'RATES ' / Rate array

TTYPE6 = 'DENSITY ' / Averaged rate array.

TFORM1 = '12A ' / 12 ASCII characters

 -- Using the HEASARC FITS recommendations we would not store time

 -- in this format but as a double precision number in seconds

 -- (or other unit specified below in TIMEUNIT) from some reference

 -- time.

TFORM2 = 'E ' / 4 byte float

TFORM3 = 'E ' / 4 byte float

TFORM4 = 'E ' / 4 byte float

TFORM5 = '12J ' / 12 4 byte integers

TFORM6 = 'E ' / 4 byte float

TUNIT2 = 'km ' / Kilometers from solar barycenter.

TUNIT3 = 'km ' /

TUNIT4 = 'km ' /

TUNIT5 = 'count/s '

TDIM1 = '(12) ' / Dimensionality of element.

TDIM5 = '(12) ' / Dimensionality of element.

TCRTYP5 = 'TIME ' / Column is a function of time.

TCRREF5 = 0.5 / Reference time is at beginning

 of first bin (0.5-1.5 in FITS)

TCDELT5 = 5 / Spacing between bins (in TIMEUNIT)

TIMEUNIT= 's ' / Unit used in time information

 other than ASCII Time column

TIMESYS = 'MJD ' / But this really wants a numeric time column!

TIMEREF = 'SPACECRAFT' / Reference location for timing

TIERABSO= 0.34 / Seconds (Absolute timing accuracy)

....

END

4.7 HDF5

Here is an implementation of the model data in HDF5

(NEEDS UPDATE)
Time group {

Time1 - Time array for the particles of energy step 1

Time2 -

 .

 .

 Time12 -

}

S/C location group {

{

x, y, z - array of S/C location

}

Channel group {

Species1 {

Attribute

Species Name 2

Energy range 2

Data

Symbolic link to Time1

Symbolic link to S/C location

Count rates array

}

…

Species 12 {

Attribute

Species Name 12

Energy range 12

Data

Symbolic link to Time2

Symbolic link to S/C location

Count rates array

}

Density 1 {

Attribute

Name 1

Data

 Symbolic link to Time 1

 Symbolic link to S/C location

 Density 1 array

}

….

Density 11 {

Attribute

Name 11

Data

 Symbolic link to Time 11

 Symbolic link to S/C location

 Density 11 array

}

}

Time1, … to Time 12 array are created specifically each particles types. Thus offset is taken care with Time1 to Time 12. This method will increase the data volume. However, with compression algorithm included, the repetitive nature of year and hour number, the actual physical disk size is not significantly increased. The nice thing about this it takes care of the time offset. In addition, in most real particle instruments, the operation mode changes from time to time and thus the time offset may change also.

The example that you have shown is the simplest form of the EPD. The data is in compact format that is used primary by the instrument team. Historically, disk space is expensive, and that information regarding energy bandwidth and time offset are kept in the software used by the instrument team. Thus, the data is not readily usable by anyone outside the instrument team. The actual representation of high resolution EPD is much complicated than this. However, the concept is the same as shown above.

4.8 PDS Labels

(NEEDS REVIEW)
Here is a ODL description of the time series. Some notes:

1. This data file will be different if it is generated on a Sun or a Mac vs a PC or VAX. Thus the IEEE_REAL and MSB_INTEGER data types indicate explicitly the binary value format.

2. Interestingly ODL allows a multi-valued vector data type in ODL statements (vector = (value,value,value)) but we do not have a multi-valued data type for column values for tables or series. So the position vector has to be handled as three separate fields.

3. The count rate is handled as a column with 12 items and the items have a sampling parameter of 5 seconds each.

pds_version_id = PDS3

object = series

columns = 17

interchange_format = binary

row_bytes = 76

rows = UNK

sampling_parameter_interval = 1

sampling_parameter_name = time

sampling_parameter_unit = minute

object = column

name = time_tag

description = "record time_tag"

bytes = 12

data_type = ASCII

start_byte = 1

end_object = column

object = column

name = sc_location_x

description = "x component of spacecraft location."

bytes = 4

data_type = IEEE_REAL

start_byte = 13

end_object = column

object = column

name = sc_location_y

description = "y component of spacecraft location."

bytes = 4

data_type = IEEE_REAL

start_byte = 17

end_object = column

object = column

name = sc_location_z

description = "z component of spacecraft location."

bytes = 4

data_type = IEEE_REAL

start_byte = 21

end_object = column

object = column

name = count_rate

description = "hypothetically instantaneously determined count rate at 12

energy steps, determined at the record's time tag for the first count_rate

with count_rates rates determined at 2rd-12th energy 2-12 steps, each

offset by 5 sec from measurement of prior step."

items = 12

item_bytes = 4

data_type = MSB_INTEGER

start_byte = 25

sampling_parameter_name = time

sampling_parameter_unit = seconds

sampling_parameter_interval = 5

/* or should the sampling parameter be the energy steps??? */

end_object = column

object = column

name = density

description = "determined from rates 1-12 by taking moments of

distribution function."

bytes = 4

data_type = IEEE_REAL

start_byte = 73

end_object = column

end_object = series

 - - - -

Here is the whole label - just as it would go onto an archive

product.

PDS_VERSION_ID = PDS3

RECORD_TYPE = FIXED_LENGTH

RECORD_BYTES = 76

FILE_RECORDS = 4207

HARDWARE_MODEL_ID = 'SUN SPARC STATION'

OPERATING_SYSTEM_ID = 'SUN OS 4.1.1'

^TIME_SERIES = 'ORB0041.FFD' /*FILE CONTAINING THE DATA*/

DATA_SET_ID = 'PVO-V-OMAG-4--SCCOORDS-24SEC-V1.0'

SPACECRAFT_NAME = 'PIONEER VENUS ORBITER'

INSTRUMENT_NAME = 'FLUXGATE MAGNETOMETER'

TARGET_NAME = VENUS

START_TIME = 1979-01-14T05:35:07.119Z

STOP_TIME = 1979-01-14T19:59:37.717Z

MISSION_PHASE_NAME = 'VENUS ORBITAL OPERATIONS'

PRODUCT_ID = 'ORB0041.FFD'

PRODUCT_CREATION_TIME = 1993-10-01

SPACECRAFT_CLOCK_START_COUNT = 'UNK'

SPACECRAFT_CLOCK_STOP_COUNT = 'UNK'

OBJECT = TIME_SERIES

COLUMNS = 17

INTERCHANGE_FORMAT = BINARY

ROW_BYTES = 76

ROWS = UNK

SAMPLING_PARAMETER_INTERVAL = 1

SAMPLING_PARAMETER_NAME = TIME

SAMPLING_PARAMETER_UNIT = MINUTE

OBJECT = COLUMN

NAME = TIME_TAG

DESCRIPTION = "RECORD TIME_TAG"

BYTES = 12

DATA_TYPE = ASCII

START_BYTE = 1

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = SC_LOCATION_X

DESCRIPTION = "X COMPONENT OF SPACECRAFT LOCATION."

BYTES = 4

DATA_TYPE = IEEE_REAL

START_BYTE = 13

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = SC_LOCATION_Y

DESCRIPTION = "Y COMPONENT OF SPACECRAFT LOCATION."

BYTES = 4

DATA_TYPE = IEEE_REAL

START_BYTE = 17

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = SC_LOCATION_Z

DESCRIPTION = "Z COMPONENT OF SPACECRAFT LOCATION."

BYTES = 4

DATA_TYPE = IEEE_REAL

START_BYTE = 21

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = COUNT_RATE

DESCRIPTION = "HYPOTHETICALLY INSTANTANEOUSLY DETERMINED COUNT RATE AT 12

ENERGY STEPS, DETERMINED AT THE RECORD'S TIME TAG FOR THE FIRST COUNT_RATE

WITH COUNT_RATES RATES DETERMINED AT 2RD-12TH ENERGY 2-12 STEPS, EACH

OFFSET BY 5 SEC FROM MEASUREMENT OF PRIOR STEP."

ITEMS = 12

ITEM_BYTES = 4

DATA_TYPE = MSB_INTEGER

START_BYTE = 25

SAMPLING_PARAMETER_NAME = TIME

SAMPLING_PARAMETER_UNIT = SECONDS

SAMPLING_PARAMETER_INTERVAL = 5

/* OR SHOULD THE SAMPLING PARAMETER BE THE ENERGY STEPS??? */

END_OBJECT = COLUMN

OBJECT = COLUMN

NAME = DENSITY

DESCRIPTION = "DETERMINED FROM RATES 1-12 BY TAKING MOMENTS OF DISTRIBUTION

FUNCTION."

BYTES = 4

DATA_TYPE = IEEE_REAL

START_BYTE = 73

END_OBJECT = COLUMN

END_OBJECT = TIME_SERIES

END

5.0 Time-series API

This section describes possible Application Programming Interfaces (APIs) that can be used to accommodate the Time Series Object (TSO) requirements defined in sections 2 and 3.

An Object Oriented (OO) approach is employed in designing the APIs with the following requirements and assumptions:

 - Support simultaneous access to multiple TSOs.

 - Data is organized and stored as described in Figure 1 (Time-Series Object Conceptual View) of Don’s TSO paper.

 - The structure of each TSO record is consistent

5.1
Application Programming Interfaces (APIs)

Each API returns a status code of Integer*4 to indicate whether the API is successfully completed. If the API is not successfully completed, it should return a negative number. Otherwise it should return the status code value of greater than 0 to indicate the successful completion of the API. Status codes and their explanation texts are not documented in this document since they can vary from implementation to implementation. The following describes the meaning for each of the data types used in the APIs.

Data Type
Description

String
A character string that has one or more characters. The size of a string is indicated by adding a colon after the word‘String’ followed by the string size. For example, String:20 represents a string that is 20 characters long.

Integer*4
4-byte signed integer

Real*4
4-byte floating point number

Void
Data type used to represent any of the data types described above. This data type is used to send or receive data to/from an API and is equivalent to ‘void’ in C, ‘equivalence’ in Fortran, and ‘Object” in Java.

There are two categories of APIs: low level APIs and high level APIs. Low level APIs provide a basic set of functions that allow users to create and manipulate TSOs, TSO records, and TSO record fields. High level APIs allow users to perform more sophisticated functions such as “get the records whose key time is between time A and time B”, “get the time range (begin and end time) for the given TSO”, “get the values for fields ’x’ and ‘y’ for the key time between time A and time B”, and etc. High level APIs make use of low level APIs as building blocks, often in combination with some programming.

· Low Level APIs

· TSO Handling APIs

· CreateTSO

· GetTSOid

· DeleteTSO

· TSO Record Handling APIs

· GetTSORec

· GetTSORecSize

· TSO Record Field Handling APIs

· CreateTSOField

· AddTSOField

· AddKeyTime

· GetKeyTime

· GetTSOFieldInfo

· GetTSOFieldInfoBlock

· GetTimeOffset

· GetProcessingDuration

· GetTimeRelationship

· GetTSOFieldId

· High Level APIs

· TSO Record Handling APIs

· GetTSORecs

· GetTotalTSORecs

· GetNumTSORecs

· TSO Record Field Handling APIs

· GetTSOFieldNames

· GetNumTSOFields

· GetNumDataValues

· GetTSOFieldsData

· GetTSOFieldsData1

· GetStartTime

· GetEndTime

5.2
Translation of Binary Data to String

TSO record consists of a key time followed by a sequence of heterogeneous fields. If the user requests an entire TSO record, the requested record is returned in a contiguous block of bytes. Since the data type of one field can be different from other fields, the system must translate individual field’s data into a common format (i.e. string) before returning the requested data. The following mapping guideline should be used for translating a binary data to a string for consistent implementation of the TSO:

Data Type
Translated String (left-justified)

2-byte, signed integer
5 bytes

2-byte, unsigned integer
5 bytes

4-byte, signed integer
10 bytes

4-byte, unsigned integer
10 bytes

4-byte, signed float (IEEE 754)
20 bytes

4-byte, unsigned float (IEEE 754)
20 bytes

8-byte, signed float (IEEE 754)
24 bytes

8-byte, unsigned float (IEEE 754)
24 bytes

5.3
Low Level APIs

Low level APIs provide a basic set of functions that allow users to create and manipulate TSOs, TSO records, and TSO record fields.

5.3.1
TSO Handling APIs

CreateTSO (String:30 name, Integer*4 TSOid)

It creates a TSO.

PARAMETERS:

name
String:30
In – the name of the TSO to be created

TSOid
Integer*4
Out – the identifier of the TSO just created

RETURNS:

status
Integer*4
Status code.

GetTSOid (String:30 name, Integer*4 TSOid)

It returns the TSO ID for the given TSO.

PARAMETERS:

name
String:30
In – the name of the TSO to be retrieved.

TSOid
Integer*4
Out – the identifier of the given TSO

RETURNS:

status
Integer*4
Status code.

DeleteTSO (Integer*4 TSOid)

It deletes a TSO. All information associated with this TSO will be deleted (e.g. field data, key time, processing duration and time relationship, etc.).

PARAMETERS:

TSOid
Integer*4
In - the id of the TSO to be deleted

RETURNS:

status
Integer*4
Status code.

5.3.2
TSO Record Handling APIs

GetTSORec (Integer*4 TSOid, Integer*4 recNumber, String:variable TSOrecord)

It returns a TSO record for the given TSO id and TSO record number. The requested record is returned in a contiguous block of bytes, and it’s user’s responsibility to map the returned bytes into appropriate data types. The TSO record consists of a ‘key time’ followed by a sequence of field information (data, time offset, processing duration, time relationship) as shown below.

Field
Size (bytes)
Comments

Key time
14
YYYYMMDDHHMMSS where

 YYYY = year,

 MM = month,

 DD = day,

 HH = hour,

 MM = minute,

 SS = second

Field x data
variable
Size depends on how the field data was declared and stored.

If a field has two Integer*2 (signed) data values, say 1234 and 1244, then the returned value would be ‘1234 1244 ‘ – see section 3 for the binary-to-string mapping information.

Field x time offset
10
Left-justified.

Field x processing duration
10
Left-justified.

Field x time relationship
18
Contains one of the following values:

 ‘start of duration ’

 ‘middle of duration’

 ‘end of duration ’

Note that the returned value is padded with blanks if the length of the string is shorter than 18.

NOTE: x represents a field number.

Field information is repeated n times where n is the number of fields in a TSO record. For example, if there are two fields in a record, then the returned record would contain the following information:

Key time, Field 1 data, Field 1 time offset, Field 1 processing duration, Field 1 time relationship, Field 2 data, Field 2 time offset, Field 2 processing duration, Field 2 time relationship

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which the requested TSO record is retrieved

recNumber
Integer*4
In – the record number from which the requested TSO record is retrieved

TSOrecord
String:variable
Out – TSO record for the given TSO id and the TSO record number.

RETURNS:

status
Integer*4
Status code.

GetTSORecSize (Integer*4 TSOid, Integer*4 recSize)

It returns the TSO record size of the given TSO. The record size returned is the size of the record returned by GetTSORec.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which the record size is determined

recSize
Integer*4
Out – the record size for the given TSO

RETURNS:

status
Integer*4
Status code.

5.3.3.
TSO Record Field Handling APIs

CreateTSOField (String:30 name, Void data, Real*4 timeOffset,

Real*4 procDuration, String:18 timeRelationship,

Integer*4 fieldId)

It creates a TSO record field.

PARAMETERS:

name
String:30
In - the name of the TSO record field to be created

data
Void
In – the data values to be added to this field. The data can be a scalar, 1-dimensional array, or multi-dimensional array of any data type.

timeOffset
Real*4
In – time offset from the key time

procDuration
Real*4
In – processing duration

timeRelationship
String:18
In – time relationship of this field to the key time. It should be one of the following values:

 ‘start of duration’

 ‘middle of duration’

 ‘end of duration’

fieldId
Integer*4
Out - the identifier of the TSO field just created.

RETURNS:

status
Integer*4
Status code.

AddTSOField (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId)

It attaches a TSO field to the given record number. Field data, time offset, processing duration, and time relationship are attached.

PARAMETERS:

TSOid
Integer*4
In - the TSO id to which this field is attached

recNum
Integer*4
In – the record number to which this field is attached

fieldId
Integer*4
In - the field id to be attached

RETURNS:

status
Integer*4
Status code.

AddKeyTime (Integer*4 TSOid, Integer*4 recNum, Void keyTime)

It attaches a key time to the given record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id to which this key time is attached

recNum
Integer*4
In – the record number to which this key time is attached

keyTime
Void
In – the key time to be added

RETURNS:

status
Integer*4
Status code.

GetKeyTime (Integer*4 TSOid, Integer*4 recNum, String:14 keyTime)

It returns the key time for the given record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which key time is retrieved

recNum
Integer*4
In – the record number from which key time is retrieved

keyTime
String:14
Out – the key time for the given record number

The format of the key time is YYYYMMDDHHMMSS where

 YYYY = year,

 MM = month,

 DD = day,

 HH = hour,

 MM = minute,

 SS = second

RETURNS:

status
Integer*4
Status code.

GetTSOFieldInfo (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

Void data, Real*4 timeOffset, Real*4 procDuration,

String:18 timeRelationship)

It returns the field information for the given field id and record number. Field data, time offset, processing duration, and time relationship are returned.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which field information is retrieved

recNum
Integer*4
In – the record number from which field information is retrieved

fieldId
Integer*4
In - the field id from which field information is retrieved

data
Void
Out – data values for the given field id.

timeOffset
Real*4
Out – time offset from the key time.

procDuration
Real*4
Out - processing duration.

timeRelationship
String:18
Out – time relationship of this field to the key time that is one of the following values:

 ‘start of duration ’

 ‘middle of duration’

 ‘end of duration ’

RETURNS:

status
Integer*4
Status code.

GetTSOFieldInfoBlock (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

String:variable data)

It returns the field information (data, time offset, processing duration, and time relationship) for the given field id and record number in a contiguous block of bytes, and it’s user’s responsibility to map the returned bytes into appropriate data types. The returned data contains the following contiguous fields in the order specified below.

Field
Size (bytes)
Comments

Data
variable
Size depends on how the field data was declared and stored.

If a field has two Integer*2 (signed) data values, say 1234 and 1244, then the returned value would be ‘1234 1244 ‘ – see section 3 for the binary-to-string mapping information.

Time offset
10
Left-justified.

Processing duration
10
Left-justified.

Time relationship
18
Contains one of the following values:

 ‘start of duration ’

 ‘middle of duration’

 ‘end of duration ’

Note that the returned value is padded with blanks if the length of the string is shorter than 18.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which field information is retrieved

recNum
Integer*4
In – the record number from which field information is retrieved

fieldId
Integer*4
In - the field id from which field information is retrieved

data
String:variable
Out – the requested field information

RETURNS:

status
Integer*4
Status code.

GetTimeOffset (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

Real*4 timeOffset)

It returns the time offset for the given field and record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which field information is retrieved

recNum
Integer*4
In – the record number from which field information is retrieved

fieldId
Integer*4
In - the field id from which field information is retrieved

timeOffset
Real*4
Out – time offset from the key time

RETURNS:

status
Integer*4
Status code.

GetProcessingDuration (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

Real*4 procDuration)

It returns the processing duration for the given field and record number.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which field information is retrieved

recNum
Integer*4
In – the record number from which field information is retrieved

fieldId
Integer*4
In - the field id from which field information is retrieved

procDuration
Real*4
Out - processing duration

RETURNS:

status
Integer*4
Status code.

GetTimeRelationship (Integer*4 TSOid, Integer*4 recNum, Integer*4 fieldId,

String:18 timeRelationship)

It returns the time relationship of the key time for the given field and record number.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which field information is retrieved

recNum
Integer*4
In – the record number from which field information is retrieved

fieldId
Integer*4
In – the field id from which field information is retrieved

timeRelationship
String:18
Out – time relationship of this field to the key time that has one of the following values:

 ‘start of duration ’

 ‘middle of duration’

 ‘end of duration ’

Note that the returned value is padded with blanks if the length of the string is shorter than 18.

RETURNS:

status
Integer*4
Status code.

GetTSOFieldId (String:30 name, Integer*4 fieldId)

It returns the field id for the given TSO field name.

PARAMETERS:

name
String:30
In – the TSO field name to be searched

fieldId
Integer*4
Out – the field ID for the given field name

RETURNS:

status
Integer*4
Status code.

5.4
High Level APIs

High level APIs allow users to perform sophisticated functions such as “get the records whose key time is between time A and time B”, “get the time range (begin and end time) for the given TSO”, “get the values for fields’x’ and ‘y’ for the key time between time A and time B”, and etc. High level APIs make use of low level APIs as building blocks, often in combination with some programming.

This section describes the APIs that address the commonly asked TSO questions by scientists. It contains the APIs identified to date, and by no means, it represents a complete set. As additional needs/functionalities are identified, this section will be modified to reflect the new requirements.

5.4.1
TSO Record Hanling APIs

GetTSORecs (Integer*4 TSOid, Void startTime, Void endTime,

String:variable TSOrecs[])

It returns the TSO records whose key time falls between the user-specified start key time and end key time in an array of TSO records (see the description of the GetTSORec API in section 4.2 for a detailed description of the TSO record). Note that it’s user’s responsibility to map the returned TSO record(s) into appropriate data types.

The number of records returned from the GetNumTSORecs API should be used in allocating the needed space for the TSOrecs[] argument.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which TSO records are retrieved

startTime
Void
In – user-specified start key time

endTime
Void
In – user-specified end key time

TSOrecs
String:variable []
Out – an array of TSO records that satisfied the user-specified search criteria

RETURNS:

status
Integer*4
Status code.

GetTotalTSORecs (Integer*4 TSOid, Integer*4 numRecs)

It returns the total number of TSO records stored in the given TSO.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which the total number of records is determined

numRecs
Integer*4
Out - the total number of records in the given TSO

RETURNS:

status
Integer*4
Status code.

GetNumTSORecs (Integer*4 TSOid, Void startTime, Void endTime,

Integer*4 numRecs)

It returns the number of TSO records whose key time falls between the user-specified start key time and end key time.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which the total number of records is retrieved

startTime
Void
In – user-specified start key time

endTime
Void
In – user-specified end key time

numRecs
Integer*4
Out - the number of records that satisfied the user-specified search criteria

RETURNS:

status
Integer*4
Status code.

5.2
TSO Record Field Hanling APIs

GetTSOFieldNames (Integer*4 TSOid, String:30 fields[])

It returns the TSO field names defined for the given TSO.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which data is retrieved

fields
String:30 []
Out – an array that contains the TSO field names that are defined for the given TSO.

RETURNS:

status
Integer*4
Status code.

GetNumTSOFields (Integer*4 TSOid, Integer*4 numFields)

It returns the total number of TSO fields defined for the given TSO.

PARAMETERS:

TSOid
Integer*4
In – the TSO id from which data is retrieved.

numFields
Integer*4
Out – the number of fields defined for the given TSO

RETURNS:

status
Integer*4
Status code.

GetNumDataValues (Integer*4 TSOid, Void startTime, Void endTime,

String:30 fieldNames[], Integer*4 numDataValues)

It determines and returns the total number of user-specified fields data values that fall between the user-specified start key time and end key time. This number should be used in allocating the needed space for the fieldData[] argument of the GetTSOFieldsData and GetTSOFieldsData1 APIs.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which the total number of records is retrieved

startTime
Void
In – user-specified start key time

endTime
Void
In – user-specified end key time

fieldNames
String:30 []
In – an array that contains the field names to be searched. Each element of the array represents a field name to be searched.

numDataValues
Integer*4
Out – the total number of user-specified field data values that fall between the user-specified start key time and end key time and return that number

RETURNS:

status
Integer*4
Status code.

GetTSOFieldsData (Integer*4 TSOid, Void startTime, Void endTime,

String:30 fieldNames[], Integer*4 numFields[],

String:variable fieldData[])

It returns the user-specified field data whose record key time falls between the user-specified start key time and end key time.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which the total number of records is retrieved

startTime
Void
In – user-specified start key time

endTime
Void
In – user-specified end key time

fieldNames
String:30 []
In – an array that contains the field names to be searched. Each element of the array represents a field name to be searched.

numFields
Integer*4 []
Out – the number of data values extracted for each field defined in fieldNames. The value of the 1st element represents the number of data values extracted for the first field defined in fieldNames, 2nd element represents the number of data values extracted for the second field defined in fieldNames, and so on.

fieldData
String:variable []
Out – extracted field data values. The values are returned in the following format:

Array position Represents
1 – numFields[1] fieldNames[1]

numFields[1]+1 through fieldNames[2]

numFields[1]+numFields[2]

.

.

numFields[n-1]+1 through fieldNames[n]

numFields[n-1]+numFields[n]

Note:

· The size of the array element is determined by the largest data type of user-specified fields.

· The size of the array should be the size returned from the GetNumDataValues API.

RETURNS:

status
Integer*4
Status code.

GetTSOFieldsData1 (Integer*4 TSOid, Void startTime, Void endTime,

String:30 fieldNames[], Integer*4 numFields[],

String:variable fieldData[])

It returns the user-specified field data whose record key time plus field ‘time offset’ falls between the user-specified start key time and end key time.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which the total number of records is retrieved

startTime
Void
In – user-specified start key time

endTime
Void
In – user-specified end key time

fieldNames
String:30 []
In – an array that contains the field names to be searched. Each element of the array represents a field name to be searched.

numFields
Integer*4 []
Out – the number of data values extracted for each field defined in fieldNames. The value of the 1st element represents the number of data values extracted for the first field defined in fieldNames, 2nd element represents the number of data values extracted for the second field defined in fieldNames, and so on.

fieldData
String:variable []
Out – extracted field data values. The values are returned in the following format:

Array position Represents
1 – numFields[1] fieldNames[1]

numFields[1]+1 through fieldNames[2]

numFields[1]+numFields[2]

.

.

numFields[n-1]+1 through fieldNames[n]

numFields[n-1]+numFields[n]

Note:

1) The size of the array element is determined by the largest data type of user-specified fields.

2) The size of the array should be the size returned from the GetNumDataValues API.

RETURNS:

status
Integer*4
Status code.

GetStartTime (Integer*4 TSOid, String:14 startTime)

It returns the start key time for the given TSO. This time is the key time retrieved from the first record.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which the end key time is retrieved

startTime
String:14
Out – the key time of the first record.

The format of the returned value is YYYYMMDDHHMMSS where

 YYYY = year,

 MM = month,

 DD = day,

 HH = hour,

 MM = minute,

 SS = second

RETURNS:

status
Integer*4
Status code.

GetEndTime (Integer*4 TSOid, String:14 endTime)

It returns the end key time for the given TSO. This time is the key time retrieved from the last record.

PARAMETERS:

TSOid
Integer*4
In - the TSO id from which the end key time is retrieved

endTime
String:14
Out – the key time of the first record.

The format of the returned value is YYYYMMDDHHMMSS where

 YYYY = year,

 MM = month,

 DD = day,

 HH = hour,

 MM = minute,

 SS = second

RETURNS:

status
Integer*4
Status code.

time

Key Time

Field 'x'

Processing

Duration

Field 'y'

Processing

Duration

Field 'z'

Processing

Duration

Field 'x' Time Offset

Field 'y' Time Offset

Field 'z' Time Offset

Figure 2: Time Relationships Example

Key Time

Field 1

Field 1 Time

Offset

Field 1

Processing

Duration

Field 1 Time

Relationship

Field 2

Field 2 Time

Offset

Field 2

Processing

Duration

Field 2 Time

Relationship

Etc.

Field m

Field m Time

Offset

Field m

Processing

Duration

Field m Time

Relationship

TSO Record 1

