� EMBED Word.Picture.6 ���

REPORT CONCERNING SPACE�DATA SYSTEM STANDARDS

THE DATA DESCRIPTION LANGUAGE EAST—

A TUTORIAL��

CCSDS 645.0-G-1

GREEN BOOK

May 1997

� EMBED Word.Picture.6 ���

�AUTHORITY

������Issue:�Green Book, Issue 1����Date:�May 1997����Location:�São José dos Campos

São Paulo, Brazil�����

This document has been approved for publication by the Management Council of the Consultative Committee for Space Data Systems (CCSDS) and reflects the consensus of technical panel experts from CCSDS Member Agencies. The procedure for review and authorization of CCSDS Reports is detailed in the Procedures Manual for the Consultative Committee for Space Data Systems [12].

This document is published and maintained by:

CCSDS Secretariat

Program Integration Division (Code MG)

National Aeronautics and Space Administration

Washington, DC 20546, USA

FOREWORD

This Report is a companion book to Reference �REF Ref_Spec_EAST�[1]� and contains rationale and explanatory material for the Recommendation in Reference �REF Ref_Spec_EAST�[1]�.

Through the process of normal evolution, it is expected that expansion, deletion, or modification of this document may occur. This Report is therefore subject to CCSDS document management and change control procedures which are defined in reference [12]. Current versions of CCSDS documents are maintained at the CCSDS Web site:

http://www.ccsds.org/ccsds/

Questions relating to the contents or status of this document should be addressed to the CCSDS Secretariat at the address indicated on page i.

At time of publication, the active Member and Observer Agencies of the CCSDS were

Ð	Agenzia Spaziale Italiana (ASI)/Italy.

Ð	British National Space Centre (BNSC)/United Kingdom.

Ð	Canadian Space Agency (CSA)/Canada.

Ð	Centre National d'Etudes Spatiales (CNES)/France.

Ð	Deutsche Forschungsanstalt fŸr Luft- und Raumfahrt e.V. (DLR)/Germany.

Ð	European Space Agency (ESA)/Europe.

Ð	Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.

Ð	National Aeronautics and Space Administration (NASA)/USA.

Ð	National Space Development Agency of Japan (NASDA)/Japan.

Ð	Russian Space Agency (RSA)/Russian Federation.

Observer Agencies

Ð	Austrian Space Agency (ASA)/Austria.

Ð	Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.

Ð	Centro Tecnico Aeroespacial (CTA)/Brazil.

Ð	Chinese Academy of Space Technology (CAST)/China.

Ð	Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.

Ð	Communications Research Laboratory (CRL)/Japan.

Ð	Danish Space Research Institute (DSRI)/Denmark.

Ð	European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.

Ð	European Telecommunications Satellite Organization (EUTELSAT)/Europe.

Ð	Federal Service of Scientific, Technical & Cultural Affairs (FSST&CA)/Belgium.

Ð	Hellenic National Space Committee (HNSC)/Greece.

Ð	Indian Space Research Organization (ISRO)/India.

Ð	Industry Canada/Communications Research Centre (CRC)/Canada.

Ð	Institute of Space and Astronautical Science (ISAS)/Japan.

Ð	Institute of Space Research (IKI)/Russian Federation.

Ð	KFKI Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.

Ð	MIKOMTEK: CSIR (CSIR)/Republic of South Africa.

Ð	Korea Aerospace Research Institute (KARI)/Korea.

Ð	Ministry of Communications (MOC)/Israel.

Ð	National Oceanic & Atmospheric Administration (NOAA)/USA.

Ð	National Space Program Office (NSPO)/Taipei.

Ð	Swedish Space Corporation (SSC)/Sweden.

Ð	United States Geological Survey (USGS)/USA.

�DOCUMENT CONTROL

Document�Title�Date�Status/Remarks��CCSDS 645.0-G-1�Report Concerning Space Data System Standards: The Data Description Language EAST—A Tutorial, Issue 1�May 1997�Original Issue������������

�CONTENTS

Section	Page

� TOC \o "1--3" * MERGEFORMAT �1	INTRODUCTION	� GOTOBUTTON _Toc383425302 � PAGEREF _Toc383425302 �1-1��

1.1	PURPOSE AND SCOPE	� GOTOBUTTON _Toc383425303 � PAGEREF _Toc383425303 �1-1��

1.2	REQUIREMENTS AND THEIR RATIONALES	� GOTOBUTTON _Toc383425304 � PAGEREF _Toc383425304 �1-1��

1.3	DOCUMENT STRUCTURE	� GOTOBUTTON _Toc383425305 � PAGEREF _Toc383425305 �1-2��

1.4	DEFINITIONS	� GOTOBUTTON _Toc383425306 � PAGEREF _Toc383425306 �1-3��

1.4.1	TERMS	� GOTOBUTTON _Toc383425307 � PAGEREF _Toc383425307 �1-3��

1.4.2	CONVENTIONS	� GOTOBUTTON _Toc383425308 � PAGEREF _Toc383425308 �1-3��

1.5	REFERENCES	� GOTOBUTTON _Toc383425309 � PAGEREF _Toc383425309 �1-4��

2	OVERVIEW	� GOTOBUTTON _Toc383425310 � PAGEREF _Toc383425310 �2-1��

2.1	CONTEXT	� GOTOBUTTON _Toc383425311 � PAGEREF _Toc383425311 �2-1��

2.2	ORGANIZATION OF THE INFORMATION CONVEYED BY EAST	� GOTOBUTTON _Toc383425312 � PAGEREF _Toc383425312 �2-3��

2.3	SCOPE OF THE DATA TO BE DESCRIBED	� GOTOBUTTON _Toc383425313 � PAGEREF _Toc383425313 �2-5��

3	PRODUCING EAST DATA DESCRIPTIONS	� GOTOBUTTON _Toc383425314 � PAGEREF _Toc383425314 �3-1��

3.1	LEXICAL ELEMENTS OF EAST DATA DESCRIPTIONS	� GOTOBUTTON _Toc383425315 � PAGEREF _Toc383425315 �3-1��

3.2	LOGICAL DESCRIPTIONS	� GOTOBUTTON _Toc383425316 � PAGEREF _Toc383425316 �3-2��

3.2.1	OVERVIEW	� GOTOBUTTON _Toc383425317 � PAGEREF _Toc383425317 �3-2��

3.2.2	ENUMERATION TYPES	� GOTOBUTTON _Toc383425318 � PAGEREF _Toc383425318 �3-5��

3.2.3	CHARACTER TYPES AND CHARACTER STRING TYPES	� GOTOBUTTON _Toc383425319 � PAGEREF _Toc383425319 �3-9��

3.2.4	INTEGER TYPES	� GOTOBUTTON _Toc383425320 � PAGEREF _Toc383425320 �3-10��

3.2.5	REAL TYPES	� GOTOBUTTON _Toc383425321 � PAGEREF _Toc383425321 �3-11��

3.2.6	RECORD TYPES	� GOTOBUTTON _Toc383425322 � PAGEREF _Toc383425322 �3-12��

3.2.7	ARRAY TYPES	� GOTOBUTTON _Toc383425323 � PAGEREF _Toc383425323 �3-15��

3.2.8	SUBTYPES	� GOTOBUTTON _Toc383425324 � PAGEREF _Toc383425324 �3-18��

3.2.9	VARIABLES	� GOTOBUTTON _Toc383425325 � PAGEREF _Toc383425325 �3-19��

3.2.10	CONSTANTS	� GOTOBUTTON _Toc383425326 � PAGEREF _Toc383425326 �3-20��

3.2.11	RECORD REPRESENTATION CLAUSES	� GOTOBUTTON _Toc383425327 � PAGEREF _Toc383425327 �3-24��

3.2.12	VIRTUAL COMPONENTS	� GOTOBUTTON _Toc383425328 � PAGEREF _Toc383425328 �3-33��

3.2.13	FREQUENTLY ASKED QUESTIONS	� GOTOBUTTON _Toc383425329 � PAGEREF _Toc383425329 �3-40��

3.3	PHYSICAL DESCRIPTIONS	� GOTOBUTTON _Toc383425330 � PAGEREF _Toc383425330 �3-42��

3.3.1	OVERVIEW	� GOTOBUTTON _Toc383425331 � PAGEREF _Toc383425331 �3-42��

3.3.2	ARRAY STORAGE METHOD	� GOTOBUTTON _Toc383425332 � PAGEREF _Toc383425332 �3-44��

3.3.3	OCTET STORAGE METHOD	� GOTOBUTTON _Toc383425333 � PAGEREF _Toc383425333 �3-45��

�CONTENTS (continued)

Section	Page

3.3.4	BINARY REPRESENTATION OF SCALAR TYPES	� GOTOBUTTON _Toc383425334 � PAGEREF _Toc383425334 �3-51��

3.3.5	ASCII REPRESENTATION OF SCALAR TYPES	� GOTOBUTTON _Toc383425335 � PAGEREF _Toc383425335 �3-59��

3.3.6	FREQUENTLY ASKED QUESTIONS	� GOTOBUTTON _Toc383425336 � PAGEREF _Toc383425336 �3-64��

3.4	ORGANIZATION OF EAST DATA DESCRIPTION RECORDS	� GOTOBUTTON _Toc383425337 � PAGEREF _Toc383425337 �3-65��

3.4.1	LOGICAL DATA DESCRIPTION PACKAGE	� GOTOBUTTON _Toc383425338 � PAGEREF _Toc383425338 �3-65��

3.4.2	PHYSICAL DATA DESCRIPTION PACKAGE	� GOTOBUTTON _Toc383425339 � PAGEREF _Toc383425339 �3-70��

4	USING EAST DATA DESCRIPTION RECORD	� GOTOBUTTON _Toc383425340 � PAGEREF _Toc383425340 �4-1��

4.1	USING LOGICAL DESCRIPTIONS	� GOTOBUTTON _Toc383425341 � PAGEREF _Toc383425341 �4-1��

4.2	USING PHYSICAL DESCRIPTIONS	� GOTOBUTTON _Toc383425342 � PAGEREF _Toc383425342 �4-2��

5	RECOMMENDED PRACTICES AND LIMITATIONS	� GOTOBUTTON _Toc383425343 � PAGEREF _Toc383425343 �5-1��

5.1	RESERVED KEYWORDS	� GOTOBUTTON _Toc383425344 � PAGEREF _Toc383425344 �5-1��

5.1.1	EAST (AND ADA) KEYWORDS	� GOTOBUTTON _Toc383425345 � PAGEREF _Toc383425345 �5-1��

5.1.2	PURE EAST RESERVED IDENTIFIERS	� GOTOBUTTON _Toc383425346 � PAGEREF _Toc383425346 �5-1��

5.1.3	PURE ADA (AND NOT EAST) KEYWORDS	� GOTOBUTTON _Toc383425347 � PAGEREF _Toc383425347 �5-2��

5.2	RECOMMENDED USAGE OF THE EAST SYNTAX	� GOTOBUTTON _Toc383425348 � PAGEREF _Toc383425348 �5-2��

5.3	IDENTIFIED LIMITATIONS OF EAST TO DESCRIBE DATA	� GOTOBUTTON _Toc383425349 � PAGEREF _Toc383425349 �5-4��

5.4	USE OF TOOLS	� GOTOBUTTON _Toc383425350 � PAGEREF _Toc383425350 �5-5��

6	EAST AND DATA DESCRIPTION LANGUAGE REQUIREMENTS	� GOTOBUTTON _Toc383425351 � PAGEREF _Toc383425351 �6-1��

�

� TOC \o ‘9--9’ * MERGEFORMAT �ANNEX A	ACRONYMS AND GLOSSARY	� GOTOBUTTON _Toc383425352 � PAGEREF _Toc383425352 �A-1��

ANNEX B	SYNTAX RULES	� GOTOBUTTON _Toc383425353 � PAGEREF _Toc383425353 �B-1��

ANNEX C	TOOLS FOR AN EAST ENVIRONMENT	� GOTOBUTTON _Toc383425354 � PAGEREF _Toc383425354 �C-1��

ANNEX D	DATA DESCRIPTION RECORD EXAMPLES	� GOTOBUTTON _Toc383425355 � PAGEREF _Toc383425355 �D-1��

ANNEX E	COMPLIANCE MATRIX	� GOTOBUTTON _Toc383425356 � PAGEREF _Toc383425356 �E-1��

ANNEX F	COMPARISON BETWEEN ADA AND EAST	� GOTOBUTTON _Toc383425357 � PAGEREF _Toc383425357 �F-1��

INDEX	I-1

��CONTENTS (continued)

Figure	Page

� TOC \f G * MERGEFORMAT �2-1	Data Exchange in SFDU Context	� GOTOBUTTON _Toc383425358 � PAGEREF _Toc383425358 �2-2��

2-2	Data and Data Description Records (DDR)	� GOTOBUTTON _Toc383425359 � PAGEREF _Toc383425359 �2-5��

2-3	Version 1 "Source Packet" Format	� GOTOBUTTON _Toc383425360 � PAGEREF _Toc383425360 �2-6��

2-4	Orbit Location	� GOTOBUTTON _Toc383425361 � PAGEREF _Toc383425361 �2-7��

2-5	Source Data Block	� GOTOBUTTON _Toc383425362 � PAGEREF _Toc383425362 �2-7��

3-1	Data Block ended by a Marker	� GOTOBUTTON _Toc383425363 � PAGEREF _Toc383425363 �3-22��

3-2	Discriminants in Version 1 "Source Packet" Format	� GOTOBUTTON _Toc383425364 � PAGEREF _Toc383425364 �3-34��

3-3	ASCII Encoded Decimal Integer Format	� GOTOBUTTON _Toc383425365 � PAGEREF _Toc383425365 �3-60��

3-4	ASCII Encoded Decimal Real Format	� GOTOBUTTON _Toc383425366 � PAGEREF _Toc383425366 �3-62��

�

Example

� TOC \f T * MERGEFORMAT �3-1	Enumeration Type Declaration	� GOTOBUTTON _Toc385908337 � PAGEREF _Toc385908337 �3-5��

3-2	Enumeration Representation Clauses Declaration	� GOTOBUTTON _Toc385908338 � PAGEREF _Toc385908338 �3-6��

3-3	Length Clause Declaration	� GOTOBUTTON _Toc385908339 � PAGEREF _Toc385908339 �3-6��

3-4	Complete Enumeration Type Definition	� GOTOBUTTON _Toc385908340 � PAGEREF _Toc385908340 �3-6��

3-5	Complete Enumeration Type Definition	� GOTOBUTTON _Toc385908341 � PAGEREF _Toc385908341 �3-7��

3-6	Enumeration Type Declaration using Characters	� GOTOBUTTON _Toc385908342 � PAGEREF _Toc385908342 �3-7��

3-7	Some Substitutes to Boolean Types	� GOTOBUTTON _Toc385908343 � PAGEREF _Toc385908343 �3-8��

3-8	Character Type Declaration	� GOTOBUTTON _Toc385908344 � PAGEREF _Toc385908344 �3-9��

3-9	Character String Type Declaration	� GOTOBUTTON _Toc385908345 � PAGEREF _Toc385908345 �3-9��

3-10	Integer Type Declaration	� GOTOBUTTON _Toc385908346 � PAGEREF _Toc385908346 �3-10��

3-11	Length Clause Declaration	� GOTOBUTTON _Toc385908347 � PAGEREF _Toc385908347 �3-10��

3-12	Complete Integer Type Declarations	� GOTOBUTTON _Toc385908348 � PAGEREF _Toc385908348 �3-10��

3-13	Complete Real Type Declarations	� GOTOBUTTON _Toc385908349 � PAGEREF _Toc385908349 �3-11��

3-14	Record Type Declaration	� GOTOBUTTON _Toc385908350 � PAGEREF _Toc385908350 �3-12��

3-15	Record Type Declaration with Optional Field	� GOTOBUTTON _Toc385908351 � PAGEREF _Toc385908351 �3-13��

3-16	Array Type Declaration with a Constant Number of Elements	� GOTOBUTTON _Toc385908352 � PAGEREF _Toc385908352 �3-15��

3-17	Array Instance Declaration	� GOTOBUTTON _Toc385908353 � PAGEREF _Toc385908353 �3-15��

3-18	Array Type Declaration with a Variable Number of Elements	� GOTOBUTTON _Toc385908354 � PAGEREF _Toc385908354 �3-15��

�CONTENTS (continued)

Example	Page

3-19	Array Instance Declarations	� GOTOBUTTON _Toc385908355 � PAGEREF _Toc385908355 �3-16��

3-20	Use of an Array Type with a Variable Number of Elements	� GOTOBUTTON _Toc385908356 � PAGEREF _Toc385908356 �3-16��

3-21	Array Instance Declaration	� GOTOBUTTON _Toc385908357 � PAGEREF _Toc385908357 �3-16��

3-22	Null Array Declaration	� GOTOBUTTON _Toc385908358 � PAGEREF _Toc385908358 �3-17��

3-23	Subtype Declarations	� GOTOBUTTON _Toc385908359 � PAGEREF _Toc385908359 �3-18��

3-24	Declaration of Variables	� GOTOBUTTON _Toc385908360 � PAGEREF _Toc385908360 �3-19��

3-25	Constant Declarations	� GOTOBUTTON _Toc385908361 � PAGEREF _Toc385908361 �3-20��

3-26	Use of Constants (1)	� GOTOBUTTON _Toc385908362 � PAGEREF _Toc385908362 �3-20��

3-27	Number Declarations	� GOTOBUTTON _Toc385908363 � PAGEREF _Toc385908363 �3-21��

3-28	Use of Constants (2)	� GOTOBUTTON _Toc385908364 � PAGEREF _Toc385908364 �3-21��

3-29	Use of Non-typed Constants (1)	� GOTOBUTTON _Toc385908365 � PAGEREF _Toc385908365 �3-21��

3-30	Use of Non-typed Constants (2)	� GOTOBUTTON _Toc385908366 � PAGEREF _Toc385908366 �3-21��

3-31	Use of Constants as Markers	� GOTOBUTTON _Toc385908367 � PAGEREF _Toc385908367 �3-22��

3-32	EOF Marker Declaration	� GOTOBUTTON _Toc385908368 � PAGEREF _Toc385908368 �3-23��

3-33	Complete Record Type Declaration	� GOTOBUTTON _Toc385908369 � PAGEREF _Toc385908369 �3-24��

3-34	Complete Record Type Declaration with Variants	� GOTOBUTTON _Toc385908370 � PAGEREF _Toc385908370 �3-25��

3-35	Use of Record Representation Clauses	� GOTOBUTTON _Toc385908371 � PAGEREF _Toc385908371 �3-26��

3-36	Incomplete Record Representation Clause Declaration (1)	� GOTOBUTTON _Toc385908372 � PAGEREF _Toc385908372 �3-27��

3-37	Incomplete Record Representation Clause Declaration (2)	� GOTOBUTTON _Toc385908373 � PAGEREF _Toc385908373 �3-28��

3-38	Complete Record Representation Clause Declaration	� GOTOBUTTON _Toc385908374 � PAGEREF _Toc385908374 �3-29��

3-39	Complete Record Type Declaration with 2 Discriminants	� GOTOBUTTON _Toc385908375 � PAGEREF _Toc385908375 �3-30��

3-40	Big Record Type Declaration	� GOTOBUTTON _Toc385908376 � PAGEREF _Toc385908376 �3-32��

3-41	Big Record Type Declaration Using Word Facility	� GOTOBUTTON _Toc385908377 � PAGEREF _Toc385908377 �3-32��

3-42	EAST logical description of Version 1 \“Source Packet\” Format	� GOTOBUTTON _Toc385908378 � PAGEREF _Toc385908378 �3-35��

3-43	Occurrences of Version 1 "Source Packet" Format	� GOTOBUTTON _Toc385908379 � PAGEREF _Toc385908379 �3-38��

3-44	Two dimensional Matrix	� GOTOBUTTON _Toc385908380 � PAGEREF _Toc385908380 �3-44��

3-45	Array storage	� GOTOBUTTON _Toc385908381 � PAGEREF _Toc385908381 �3-45��

3-46	Record with Elements on Octet Boundaries	� GOTOBUTTON _Toc385908382 � PAGEREF _Toc385908382 �3-46��

3-47	Record with Elements not on Octet Boundaries	� GOTOBUTTON _Toc385908383 � PAGEREF _Toc385908383 �3-48��

3-48	Octet storage	� GOTOBUTTON _Toc385908384 � PAGEREF _Toc385908384 �3-50��

3-49	Binary Integer Type Physical Description (1)	� GOTOBUTTON _Toc385908385 � PAGEREF _Toc385908385 �3-55��

�CONTENTS (continued)

Example	Page

3-50	Binary Integer Type Physical Description (2)	� GOTOBUTTON _Toc385908386 � PAGEREF _Toc385908386 �3-55��

3-51	List of Conventions	� GOTOBUTTON _Toc385908387 � PAGEREF _Toc385908387 �3-57��

3-52	Binary Real Type Physical Description	� GOTOBUTTON _Toc385908388 � PAGEREF _Toc385908388 �3-58��

3-53	ASCII Enumeration Type Logical Declaration	� GOTOBUTTON _Toc385908389 � PAGEREF _Toc385908389 �3-59��

3-54	ASCII Enumeration Type Physical Description	� GOTOBUTTON _Toc385908390 � PAGEREF _Toc385908390 �3-60��

3-55	ASCII Integer Type Logical Declaration	� GOTOBUTTON _Toc385908391 � PAGEREF _Toc385908391 �3-61��

3-56	ASCII Integer Type Physical Description	� GOTOBUTTON _Toc385908392 � PAGEREF _Toc385908392 �3-61��

3-57	ASCII Real Type Logical Declaration	� GOTOBUTTON _Toc385908393 � PAGEREF _Toc385908393 �3-63��

3-58	ASCII Real Type Physical Description	� GOTOBUTTON _Toc385908394 � PAGEREF _Toc385908394 �3-63��

3-59	Complete Logical Description	� GOTOBUTTON _Toc385908395 � PAGEREF _Toc385908395 �3-66��

3-60	Template for ASCII and Binary Physical Descriptions	� GOTOBUTTON _Toc385908396 � PAGEREF _Toc385908396 �3-71��

3-61	Template for Relation Type Definition	� GOTOBUTTON _Toc385908397 � PAGEREF _Toc385908397 �3-72��

3-62	Complete Physical Description	� GOTOBUTTON _Toc385908398 � PAGEREF _Toc385908398 �3-74��

4-1	Complete Logical Description	� GOTOBUTTON _Toc385908399 � PAGEREF _Toc385908399 �4-1��

4-2	Complete Physical Description	� GOTOBUTTON _Toc385908400 � PAGEREF _Toc385908400 �4-3��

�

��SEQ chapitre \h�	INTRODUCTION

	PURPOSE AND SCOPE

Panel 2 of the Consultative Committee for Space Data Systems (CCSDS) is involved in information interchange issues. The Standard Formatted Data Unit (SFDU) concept is intended to allow the automation of information interchange between and among different environments (see reference �REF Ref_SFDU_Spec�[4]�).

Intrinsic to the SFDU specification is the use of Data Description Record (DDR) to specify the representation of the interchanged data. Because of the wide diversity of operating systems and machine representations for numerics, the understanding of data coming from another agency or archives can only be reached by using a rigorous notation/language that provides a complete, non�ambiguous logical and physical description. EAST (Enhanced Ada Subset) is one of the recommended languages for data description records.

This document is intended to assist in the use of EAST, proposed as a description language. It explains how and why one would use this language to interchange data and data descriptions.

This document describes the usage of the EAST language, its format and construction rules as well as suggested practices. The chosen acronym (Enhanced Ada SubseT) suggests that EAST is based on a subset of the Ada programming language, which is the declarative part. The use of EAST does not preclude the use of any language for the application accessing the data, because in most of the cases, the use of a parser and an interpreter is needed. See � REF _Ref349614660 \n �5.4� and Annex � REF _Ref349615302 \n �C� for more explanations and a list of the available tools.

Most users will be able to use the language after reading this document.

	REQUIREMENTS AND THEIR RATIONALES

This section has been developed from the document “Language Usage in Information Interchange” (see reference �REF Ref_Language_Usage�[2]�), which lists the Requirements for a Data Interchange Language (DIL). The CCSDS believes that the general features of a language to support the description of data being interchanged shall be:

R1.	Good Readability

Rationale:	Users not specialized in computing must be able to understand descriptions of data to be processed, with a minimal effort.

R2.	Support of basic data types

Rationale:	As a minimum, the “atomic” types of character and numeric real and integer must be supported within the language. Additionally, the chosen language set should allow Boolean, bit and complex types.

R3.	Data type definition capabilities

Rationale:	Data type definition is the ability of the language to define and name user data types, to classify into families of data (date, temperature_in_degree_Celsius, distance� XE "Distance" �_in_kilometers...).

R4.	Data type structuring capabilities

Rationale:	Data type structuring is the ability of the language to describe the logical relationship of “atomic” data items.

R5.	Separation of the description from the data

Rationale:	This is the ability to physically separate the description of the data from the data itself, so that the description can be updated and reused independently of the data.

R6.	Physical representation capabilities

Rationale:	Physical representation is the ability of the language to specify the bit pattern representation of data to be transported. This representation must specify not only basic data types, but also how the implementation producing the information represents these types.

	DOCUMENT STRUCTURE

This document is intended to explain to potential users the description capabilities of EAST. It provides information for the effective use of EAST. Readers who will also be reading the EAST formal specification (reference �REF Ref_Spec_EAST�[1]�) may find it useful to read this document first, in order to have more examples and justifications of the EAST syntactic rules.

This document is structured as follows:

�SYMBOL 45 \f "Symbol"�	Section � REF _Ref349615840 \n �2� presents an overview of the context and why is a Data Interchange Language useful.

�SYMBOL 45 \f "Symbol"�	Section � REF _Ref349615864 \n �3� provides information and examples about EAST capabilities and how they can be used to satisfy data description requirements.

�SYMBOL 45 \f "Symbol"�	Section � REF _Ref349615891 \n �4� proposes some uses of EAST descriptions.

�SYMBOL 45 \f "Symbol"�	Section � REF _Ref349615916 \n �5� suggests some general practices which make the data description easier, identifies usages which may cause difficulties.

�SYMBOL 45 \f "Symbol"�	Section � REF _Ref349615945 \n �6� is a discussion of correspondence between requirements and EAST capabilities.

��SYMBOL 45 \f "Symbol"�	Annex � REF _Ref349615969 \n �A� contains acronyms used in this document.

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref349615993 \n �B� contains some EAST usage rules identified in this document.

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref349615302 \n �C� lists some of the tools that can be provided to check, generate, parse and analyze EAST descriptions.

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref349616055 \n �D� provides examples of data descriptions generated with an existing interactive tool.

�SYMBOL 45 \f "Symbol"�	Annex � REF _Ref349616084 \n �E� provides a compliance matrix according to data description requirements.

�SYMBOL 45 \f "Symbol"�	Annex F provides a comparison between Ada and EAST.

	DEFINITIONS

	TERMS

The terms used throughout this document are listed in Annex � REF _Ref349615969 \n �A�. They are also explained in the text when encountered for the first time.

	CONVENTIONS

EAST is not case sensitive, but for the sake of readability, we adopted the following conventions in the document:

�SYMBOL 45 \f "Symbol"�	EAST keywords are provided using lowercase letters;

�SYMBOL 45 \f "Symbol"�	user type names or user variable� XE "Variable" � names are provided using uppercase letters.

As a tutorial, this document explains the EAST syntactic rules, in providing examples, notes or answers to questions. Different categories of users will read this tutorial:

�SYMBOL 45 \f "Symbol"�	application users, who are interested in knowing if EAST meets their requirements, if tools support the EAST technology, etc.;

�SYMBOL 45 \f "Symbol"�	programmers, who require many examples to follow in implementing specifications;

�SYMBOL 45 \f "Symbol"�	Ada programmers, who are interested in the references to the Ada language, the differences between the two languages, etc.

Three levels of detail corresponding to the categories above are provided in this document. The following convention applies throughout the document: the notes that are addressed to readers who have some knowledge of Ada, are indicated by a (Fn) sign; the text of the notes is gathered in Annex F.

�	REFERENCES

[1]	The Data Description Language EAST Specification (CCSD0010). Recommendation for Space Data Systems Standards, CCSDS 644.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, May 1997.

[2]	Language Usage in Information Interchange Tutorial. Report Concerning Space Data Systems Standards, CCSDS 642.1-G-1. Green Book. Issue 1. Washington, D.C.: CCSDS, October 1989.

[3]	Packet Telemetry. Recommendation for Space Data Systems Standards, CCSDS 102.0-B-4. Blue Book. Issue 4. Washington, D.C.: CCSDS, November 1995.

[4]	Standard Formatted Data Units—Structure and Construction Rules. Recommendation for Space Data Systems Standards, CCSDS 620.0-B-2. Blue Book. Issue 2. Washington, D.C.: CCSDS, May 1992.

[5]	ASCII Encoded English (CCSD0002). Recommendation for Space Data Systems Standards, CCSDS 643.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, November 1992.

[6]	Information Processing—8-Bit Single-Byte Coded Graphic Character Sets—Part 1: Latin Alphabet No. 1. International Standard, ISO 8859-1:1987. Geneva: ISO, 1987.

[7]	Information Technology—Programming Languages—Ada. International Standard, ISO/IEC 8652:1995. Geneva: ISO, 1995.

[8]	Binary Floating Point Arithmetic. American National Standard, ANSI/IEEE 754-1985 (R1991). New York: ANSI, 1985.

[9]	The Data Description Language EAST—List of Conventions. Report Concerning Space Data Systems Standards, CCSDS 646.0-G-1. Green Book. Issue 1, May 1997.

[10]	Information Technology—Programming Languages—FORTRAN. International Standard, ISO/IEC 1539:1991. Geneva: ISO, 1991.

[11]	Standard Formatted Data Units—Control Authority Procedures. Recommendation for Space Data Systems Standards, CCSDS 630.0-B-1. Blue Book. Issue 1. Washington, D.C.: CCSDS, June 1993.

[12]	Procedures Manual for the Consultative Committee for Space Data Systems. CCSDS A00.0�Y�7. Yellow Book. Issue 7. Washington, D.C.: CCSDS, November 1996.

��SEQ chapitre \h�	OVERVIEW

	CONTEXT

Before reading the technical content of the tutorial, the reader may want to know what is useful for a description language and why a formal language (like EAST) is more advantageous to a user than other languages (like the English language, for example).

Space agencies produce a large amount of data, which are immediately investigated, or stored, or exchanged, etc. A data item that is not described is useless. Indeed, how can it be used, if no one knows what it represents, how long it is, if it is a scalar or something else?

Data description languages are therefore highly necessary to space agencies to manage and maintain their vast amounts of data. Some data description languages are available: the natural language English is also recommended by the CCSDS (reference �REF Ref_ASCII_Spec�[5]�) to supply information within the Standard Formatted Data Unit (SFDU) environment.

The use of a formal language instead of a natural language has the following advantage: it is a machine interpretable language that allows the interpretation of data in an automated fashion. Tools can therefore be implemented to provide help to users for:

�SYMBOL 45 \f "Symbol"�	the description of data;

�SYMBOL 45 \f "Symbol"�	the interpretation of data;

�SYMBOL 45 \f "Symbol"�	the conversion of data to another format;

�SYMBOL 45 \f "Symbol"�	the filtering of data to extract the useful information;

�SYMBOL 45 \f "Symbol"�	the rehabilitation of old data, etc.

The use of a formal language that provides a physical separation of data and data description has the following additional advantage: it does not interfere with the data that it describes. It does not impose any format to the data. Such a formal language is able to describe the data as they actually are. It is therefore able to describe “historical” data, as well as “future” data.

EAST is a language that meets these requirements. It allows the automated interpretation of the data and the description of “historical” and “future” data.

�EAST is a proposed language for the production of Data Description Records (DDR) in the SFDU context. Figure � REF F_Data_Exchange * MERGEFORMAT �2-1� describes the general context of data exchange.

�

Legend:

ADID		Authority and Description Identifier� XE "Identifier" �

ADU		Application Data Unit

CA		Control Authority

DDU		Description Data Unit

DED		Data Entity Dictionary

EDU		Exchange Data Unit

Figure �SEQ chapitre \c�2�-� SEQ figure �1�: Data Exchange in SFDU Context �TC \f G " �SEQ chapitre \c�2�-� SEQ figure \c�1�	Data Exchange in SFDU Context"�

A more detailed description of the SFDU context is provided in the SFDU - Structure and Construction Rules Book (reference �REF Ref_SFDU_Spec�[4]�).

�	ORGANIZATION OF THE INFORMATION CONVEYED BY EAST

An EAST data description is composed of two parts, called packages: the first one is called “logical description” and the second one is called “physical description”.

EAST Data Description:�������package� XE "Package" � name_of_the_logical_description is�������Logical Description� XE "Logical description" � �����end name_of_the_logical_description ;������������package� XE "Package" � name_of_the_physical_description is�������Physical Description� XE "Physical description" � �����end name_of_the_physical_description ;�����������

a)	 Logical Description� XE "Logical description" �

The logical part provides syntactic information and in some way semantic information. It provides a large part of the information needed by an application user to understand the data he has to deal with.

The logical part gives a name to every data item; i.e., it provides some meaning of the data item (e.g., a COUNTER, a MEASUREMENT, a SATELLITE_IDENTIFIER, an ACTIVITY_FLAG, etc.).

It describes the nature of every data item (e.g., it is a whole number, or a real number, or a character string, or a bit string, etc.).

It gives syntactic information to every data item (e.g., it is a positive 16-bit integer, or a 32-bit real with a range of values from 0.1 to 1.0, or a 20 character string, or two-bit enumeration with three permitted values, ON, OFF, ERROR, etc.).

The logical part also includes elements for the structuring of data; e.g.:

�SYMBOL 45 \f "Symbol"�	a date is made of an integer representing the year, an integer representing the month and an integer representing the day;

�SYMBOL 45 \f "Symbol"�	the repetition of 100 measurements defines a data block, etc.

It also provides the ordering of the data items.

Subsection � REF _Ref349616297 \n �3.2� of this document describes the logical part of an EAST data description.

b)	Physical Description� XE "Physical description" �

The physical part provides pure syntactic information. It is a detailed description, i.e., a bit level description that ensures a non-ambiguous interpretation of the data. This part should only be used by the tool in charge of the data interpretation or of other processing.

It provides machine dependent characteristics that determine the coding of real numbers, the coding of integers, the way of storing tables, etc. For example:

�SYMBOL 45 \f "Symbol"�	the location of the sign bit, the location of the exponent and the location of the mantissa, and also the standard used to build the real (e.g., the IEEE standard—see reference �REF Ref_IEEE�[8]�) are provided for any real;

�SYMBOL 45 \f "Symbol"�	the location of the most significant bit and the location of the least significant bit are provided for any integer.

While EAST physical descriptions are written in a human readable language, manually reading the physical part is not recommended, since it is likely to be long and complicated.

Subsection � REF _Ref349616325 \n �3.3� of this document describes the physical part of an EAST data description.

A tool based on a Graphical User Interface (see Annex � REF _Ref349615302 \n �C�) is considered to be highly necessary to the user, so that he can write data descriptions in EAST without any knowledge of the syntax. Nevertheless this document intends to explain how to use the syntax of EAST. If a user wishes to generate EAST descriptions by hand (e.g., for testing purposes) another tool (see Annex � REF _Ref349615302 \n �C�) is necessary to check the correctness of the generated description.

A tool that parses EAST data descriptions and interprets data should also be used by application users to access the data.

Figure � REF F_Data_and_DDR * MERGEFORMAT �2-2� illustrates the tools that are recommended:

� EMBED Designer ���

Figure �SEQ chapitre \c�2�-� SEQ figure �2�: Data and Data Description Records (DDR) �TC \f G " �SEQ chapitre \c�2�-� SEQ figure \c�2�	Data and Data Description Records (DDR)"�

	SCOPE OF THE DATA TO BE DESCRIBED

Data Descriptions may be at once the concern of people in many different contexts: project, telemetry, telecommand, data processing or other results storage.

Whatever the context, data must be described and could be represented using a tree structure. The structure of the data is represented by the “branches” of the tree, and the elementary or scalar data by the “leaves”.

The following subsections present two examples of data, taken from different contexts (telemetry and space mechanics), that are used throughout the document to illustrate the EAST syntax.

The telemetry context provides many examples of exchanged data.

The figure � REF F_Source_Packet * MERGEFORMAT �2-3� gives, as an example, the format of a source packet (see reference �REF Ref_Packet_Spec�[3]�).

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�2�-� SEQ figure �3�: Version 1 “Source Packet” Format�TC \f G " �SEQ chapitre \c�2�-� SEQ figure \c�3�	Version 1 \"Source Packet\" Format"�

A branch or a leaf may be optional, depending on the value of another leaf. In the example, “Secondary Header” is present or absent, depending on the value of “Secondary Header Flag”. A leaf may be:

�SYMBOL 45 \f "Symbol"�	a bit string, with specific bit patterns, representing a limited set of values (e.g., the “Segmentation Flag”, which identifies the status of the packet);

�SYMBOL 45 \f "Symbol"�	a whole number, with a predefined length (e.g., the 16 bit field “Source Data Length”);

�SYMBOL 45 \f "Symbol"�	a real number, as illustrated in the following example.

�Figure � REF F_Orbit_Location * MERGEFORMAT �2-4� provides an example of the space mechanics context:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�2�-� SEQ figure �4�: Orbit Location�TC \f G "�SEQ chapitre \c�2�-� SEQ figure \c�4�	Orbit Location"�

Figure � REF F_Source_Data_Block * MERGEFORMAT �2-5� provides imaginary telemetry data, which could be, for example, the source data of the packet (see figure � REF F_Source_Packet * MERGEFORMAT �2-3�).

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�2�-� SEQ figure�5�: Source Data Block�TC \f G "�SEQ chapitre \c�2�-� SEQ figure \c�5�	Source Data Block"�

The number of elements of a branch may depend on the value of another leaf. In the example, the number of measurements determines the number of data items.

A Data Description Language must therefore make the description of scalar data easy and must allow the data to be structured to varying levels of complexity.

��SEQ chapitre \h�	PRODUCING EAST DATA DESCRIPTIONS

This section deals with the production of EAST data descriptions:

�SYMBOL 45 \f "Symbol"�	subsection � REF _Ref349616426 \n �3.1� describes the lexical elements used in any part of an EAST description;

�SYMBOL 45 \f "Symbol"�	subsection � REF _Ref349616439 \n �3.2� describes the information conveyed by the logical description part;

�SYMBOL 45 \f "Symbol"�	subsection � REF _Ref349616457 \n �3.3� describes the information conveyed by the physical description part;

�SYMBOL 45 \f "Symbol"�	subsection � REF _Ref349616484 \n �3.4� describes the relation between the logical information and the physical information.

	LEXICAL ELEMENTS OF EAST DATA DESCRIPTIONS

The text of a data description is a sequence of lexical elements, each composed of characters. The 128 first characters of the “Latin Alphabet No. 1” character set (see reference �REF Ref_Latin1_Spec�[6]�) are allowed in an EAST description. A lexical element is either a delimiter� XE "Delimiter" �, an identifier� XE "Identifier" � (which may be a reserved word), a numeric literal, a character string, a string literal, or a comment� XE "Comment" �. The rules of composition are given in this section.

In some cases an explicit separator� XE "Separator" � is required to separate adjacent lexical elements (namely, when without separation, interpretation as a single lexical element is possible). A separator is any of a space character, a control character, or the end of a line.

�SYMBOL 45 \f "Symbol"�	A space character is a separator� XE "Separator" � except within a comment� XE "Comment" �, a string literal, or a space character literal.

�SYMBOL 45 \f "Symbol"�	Control characters other than horizontal tabulation are always separators. Horizontal tabulation is a separator� XE "Separator" � except within a comment� XE "Comment" �.

�SYMBOL 45 \f "Symbol"�	The end of a line is always a separator� XE "Separator" �. It is understood to occur upon encountering the following conditions:

•	a Carriage Return, when it is not followed by a Line Feed;

•	a Carriage Return/Line Feed pair, regardless of what follows;

•	a Line Feed, when it is not followed by a Carriage Return;

•	a Line Feed/Carriage Return pair, regardless of what follows.

A delimiter� XE "Delimiter" � is either one of the following special characters:

	& ' () * + , - . / : ; < = > |

or one of the following compound delimiters each composed of two adjacent special characters:

	=> .. ** := /= >= <= << >> <>

Each of the special characters listed for single character delimiters is a single delimiter� XE "Delimiter" � except if this character is used as a character of a compound delimiter, or as a character of a comment� XE "Comment" �, string literal, character literal, or numeric literal.

A comment� XE "Comment" � starts with two adjacent hyphens and extends up to the end of the line. A comment can appear on any line of a description.

An identifier� XE "Identifier" � is a character string composed of letters, digits and underline characters. All characters of an identifier are significant, including any underline character inserted between a letter or a digit and an adjacent letter or digit. Identifiers differing in the use of corresponding upper- and lowercase letters are considered to be the same.

A numeric literal is a character string, composed of letters, digits and underline characters, that represents a numeric value.

See reference �REF Ref_Spec_EAST�[1]� for a detailed definition of the lexical elements.

	LOGICAL DESCRIPTIONS

	OVERVIEW

In order to list some of the usual kinds of transported data, both contexts (telemetry and space mechanics) presented in the previous section are used to illustrate the information conveyed in EAST logical descriptions.

The logical part of an EAST description provides the information that is required by an application user to understand the data. Each data item is described using a programming language concept, called type. A type is a model, defined once, that is used to create many occurrences of the model.

A type has a name: this name, if well chosen, is a way to indicate the meaning of the model.

A type has a nature: the model may represents a whole number or a real number, or a character string, etc. The syntax used to define a type varies according to the nature of the type. Depending on the nature of the type, some additional information is given; in most of the cases, the list (or the range) of permitted values is defined.

There are two kinds of types:

�SYMBOL 45 \f "Symbol"�	The basic types, also called atomic types, that are elementary types. EAST allows the definition of enumeration types (see � REF _Ref349616539 \n �3.2.2�), integer type� XE "Integer type" �s (see � REF _Ref349616561 \n �3.2.4�) and real types (see � REF _Ref349616576 \n �3.2.5�). EAST provides a predefined basic type: character (see � REF _Ref349616593 \n �3.2.3�).

�SYMBOL 45 \f "Symbol"�	The composite types, also called structuring types, that are composed of basic types or composite types. EAST allows the aggregation of elements with the definition of record types (see � REF _Ref349616616 \n �3.2.6� and � REF _Ref349616630 \n �3.2.11�) and the repetition of elements with the definition of array types (see � REF _Ref349616649 \n �3.2.7�). EAST provides a predefined composite type: character string (see � REF _Ref349616660 \n �3.2.3�).

When defined, a type can be used to define other types:

�SYMBOL 45 \f "Symbol"�	by aggregation for the definition of composite types;

�SYMBOL 45 \f "Symbol"�	by restriction for the definition of subtypes (see � REF _Ref349616684 \n �3.2.8�).

A type can be also used to define occurrences of the data:

�SYMBOL 45 \f "Symbol"�	subsection � REF _Ref349616710 \n �3.2.9� describes the definition and the use of variables;

�SYMBOL 45 \f "Symbol"�	subsection � REF _Ref349616736 \n �3.2.10� describes the definition and the use of constants.

The logical part of an EAST data description is composed of two sections: one for the definition of the data models (also called section for the declaration of types) and one for the definition of data occurrences (also called section for the declaration of variables). The data models are defined using type, subtype� XE "Suptype" � and constant� XE "Constant" � declarations, while the data occurrences are defined using variable� XE "Variable" � and constant declarations.

The first definition of a variable� XE "Variable" � delimits the two sections. Any declaration that occurs before the first variable definition belongs to the section for the declaration of types. Any declaration that occurs after the first variable definition (including the first variable declaration itself) belongs to the section for the declaration of variables.

�The logical part is structured as follows:

�EMBED MSDraw * MERGEFORMAT���

Some of the frequently asked questions about the logical description part of EAST data descriptions are summarized in � REF _Ref349616786 \n �3.2.13�.

�	ENUMERATION TYPES

Enumeration type� XE "Enumeration type" �s are used each time the description of a limited set of values is needed.

In a telemetry context, a block of data usually begins with a synchronization signal. This signal consists of a specific bit pattern, which represents a value. This synchronization field may have, for example, a 16-bit length. It may be filled with two alternative values, for example one for a primary block (called PRIMARY_SYNCHRO) and one for a secondary block (called SECONDARY_SYNCHRO). This signal is described using an EAST enumeration type.

type SYNCHRONIZATION_VALUE is (PRIMARY_SYNCHRO,�						SECONDARY_SYNCHRO);

Example �SEQ chapitre \c�3�-�SEQ exemple�1�: Enumeration Type� XE "Enumeration type" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�1�	Enumeration Type Declaration"�

In the example, “PRIMARY_SYNCHRO” represents the name (i.e., the meaning) given to one of the enumeration literals associated with the type. If there is a need to express the bit pattern of this synchronization value (for example: the hexadecimal value 0A08), the enumeration representation clauses of the EAST Syntax allow a user to formulate this integer value, in four possible ways(F�SEQ note�1�):

	–	2#0000101000001000#�	-- binary integer�	–	2568				�� decimal integer�	–	8#5010#			-- octal integer�	–	16#0A08#			-- hexadecimal integer

In the same way, if the bit pattern of the other synchronization value, SECONDARY_SYNCHRO, is the hexadecimal value CD04, then this integer value can be expressed in four possible ways:

	–	2#1100110100000100#	-- binary integer�	–	52484				�� decimal integer�	–	8#146404#			-- octal number�	–	16#CD04#			-- hexadecimal integer

NOTE	�SYMBOL 45 \f "Symbol"�	If no base is specified, 10 is the default base.

�The following example illustrates enumeration representation clauses using hexadecimal values:

for SYNCHRONIZATION_VALUE use (PRIMARY_SYNCHRO	=> 16#0A08#,�						SECONDARY_SYNCHRO 	=> 16#CD04#);

Example �SEQ chapitre \c�3�-�SEQ exemple�2�: Enumeration Representation� XE "Enumeration representation clause" � Clause� XE "Representation clause" �s Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�2�	Enumeration Representation Clauses Declaration"�

The EAST length clauses are used to specify the field length (in bits)(F�SEQ note�2�). In the example, the synchronization signal is a 16-bit field:

for SYNCHRONIZATION_VALUE'size use 16; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�3�: Length Clause� XE "Length clause" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�3�	Length Clause Declaration"�

NOTE	�SYMBOL 45 \f "Symbol"�	16 bits are necessary to code the hexadecimal value CD04.

The use of enumeration types can be extended to other applications. Each time a data item (variable� XE "Variable" �) can have a limited set of values, an enumeration type is advisable. The definition of an enumeration type provides indeed the meaning of every value of the type. The use of enumeration types improves the semantic meaning of the descriptions (see � REF _Ref349616869 \n �5.2�).

As an example, in the figure � REF F_Source_Packet * MERGEFORMAT �2-3�, the Segmentation Flag field is used to indicate the status of a long message-oriented source packet that has been broken into shorter communications-oriented segments. This status may have four different values, corresponding to the four segment types: one value for a first segment, one value for a continuation segment, one value for a last segment and one value for an unsegmented packet. This status is described by the following EAST declarations:

type STATUS is (CONTINUATION_SEGMENT, �	FIRST_SEGMENT, �	LAST_SEGMENT, �	UNSEGMENTED_PACKET);�for STATUS'size use 2;�for STATUS use (CONTINUATION_SEGMENT => 2#00#,�	FIRST_SEGMENT => 2#01#, �	LAST_SEGMENT => 2#10#,�	UNSEGMENTED_PACKET => 2#11#);

Example �SEQ chapitre \c�3�-�SEQ exemple�4�: Complete Enumeration Type� XE "Enumeration type" � Definition�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�4�	Complete Enumeration Type Definition"�

In the same example, the “Version Number” field is used to specify the packet format. At present only 2 versions of the packet are permitted, but 3 bits are reserved. This packet format is also described using an enumeration type, as follows:

type VERSION is (VERSION_1 , VERSION_2);�for VERSION'size use 3; -- bits�for VERSION use (VERSION_1 => 2#000# , VERSION_2 => 2#100#);

Example �SEQ chapitre \c�3�-�SEQ exemple�5�: Complete Enumeration Type� XE "Enumeration type" � Definition�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�5�	Complete Enumeration Type Definition"�

NOTE	�SYMBOL 45 \f "Symbol"�	The field length of the enumeration type VERSION could have been specified with a minimal value: 1 bit is necessary to implement 2 enumeration literals. But it is not an absolute necessity to specify a minimal length clause. In this case, by adding new version numbers, future variations of the source packet structure become possible.

Enumeration literal� XE "Enumeration literal" �s may also be character literals. The following example defines the ROMAN_NUMERAL type:

type ROMAN_NUMERAL is (‘I’ , ‘V’ , ‘X’ , ‘L’ , ‘C’ , ‘D’ , ‘M’);�for ROMAN_NUMERAL use (‘I’ => 1, ‘V’ => 5, ‘X’ => 10, ‘L’ => 50, ‘C’ =>100, �	‘D’ => 500, ‘M’ => 1000);�for ROMAN_NUMERAL'size use 16;

Example �SEQ chapitre \c�3�-�SEQ exemple�6�: Enumeration Type� XE "Enumeration type" � Declaration using Characters�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�6�	Enumeration Type Declaration using Characters"�

Rules about the Usage of Enumeration Type� XE "Enumeration type" �s

Rule �SEQ regle�1�	The enumeration literals listed in an enumeration type definition are identifiers or character literals. See section 3.2.1.2. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�2�	The size of an enumeration type must always be provided; i.e., a length clause is mandatory. See section 3.2.4.1. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�3�	An enumeration representation clause is optional. See section 3.2.4.2. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�4�(F�SEQ note�3�)	If there is an enumeration representation clause, then each literal of the enumeration type must be provided with a unique bit pattern. The numeric value associated with this bit pattern must satisfy the ordering relation of the type (i.e., must increase). If no enumeration representation clause is provided, then default integer codes are presumed for binary encoded enumeration types: the value of the first listed enumeration literal is zero; the value for each other enumeration literal is one more than for its predecessor in the list. If no enumeration representation clause is provided, the enumeration type is maybe ASCII encoded according to the physical part of the EAST description (see � REF _Ref349617457 \n �3.3.5�). See sections 3.2.4.2. and 3.3.3.2 of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

A special case of enumeration types: the Booleans(F�SEQ note�4�)

EAST can be used to describe specific Boolean types, which gives more powerful semantic meaning than the classic “Boolean” type available in some programming languages. A classic Boolean type answers a question (it is TRUE or FALSE). But it is more meaningful to express the kind of question the Boolean answers. The following examples provide an illustration of the expressiveness of specific Boolean types:

type SATELLITE_STATUS is (HIDDEN , VISIBLE);�for SATELLITE_STATUS use (HIDDEN => 0 , VISIBLE => 1);	�for SATELLITE_STATUS'size use 1; -- bit

�type PRESENCE_FLAG is (ABSENT, PRESENT);�for PRESENCE_FLAG use (ABSENT => 0 , PRESENT => 1);	�for PRESENCE_FLAG'size use 8; -- bits

�type PACKET_TYPE is (TELEMETRY, TELECOMMAND);�for PACKET_TYPE use (TELEMETRY => 0 , TELECOMMAND => 1);	�for PACKET_TYPE'size use 1; -- bit

Example �SEQ chapitre \c�3�-�SEQ exemple�7�: Some Substitutes to Boolean Types�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�7�	Some Substitutes to Boolean Types"�

NOTE 	�SYMBOL 45 \f "Symbol"�	The PRESENCE_FLAG is an enumeration type requiring 1 bit, but the size is given as 8 bits: this is a case of a forced size.

�	CHARACTER TYPES AND CHARACTER STRING TYPES

EAST provides the predefined type “CHARACTER”. This type has been defined as an eight-bit coded enumeration type composed of the 256 ISO8859-1 (Latin Alphabet No. 1) coded characters, containing 191 printable characters. The full character set is defined in Annex B of the EAST Specification document (reference �REF Ref_Spec_EAST�[1]�) and in the Latin Alphabet No. 1 document (reference �REF Ref_Latin1_Spec�[6]�).

NOTE	�SYMBOL 45 \f "Symbol"�	A predefined EAST type is a type provided by EAST that can be used without having been declared.

Other character types may be derived (or subtyped) from the predefined EAST CHARACTER type. For example, a character type which only accepts capital letters is defined as follows:

subtype� XE "Suptype" � CAPITAL_LETTER is CHARACTER range ‘A’ .. ‘Z’;

Example �SEQ chapitre \c�3�-�SEQ exemple�8�: Character Type� XE "Character type" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�8�	Character Type Declaration"�

For the description of character strings, EAST provides the predefined type “STRING”. A possible way to use the predefined EAST STRING type is to subtype� XE "Suptype" � it, i.e., to rename it and optionally to specify the size of the actual character string.

In the next example, the EAST declaration defines a 32 character string type:

subtype� XE "Suptype" � NAME is STRING (1 .. 32);

Example �SEQ chapitre \c�3�-�SEQ exemple�9�: Character String Type Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�9�	Character String Type Declaration"�

More explanations about subtypes are provided in � REF _Ref349616932 \n �3.2.8�.

Rule �SEQ regle�5� 	The types CHARACTER and STRING(F�SEQ note�5�) do not have to be declared in a data description. They are predefined types of EAST. See section 3.2.1.1. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

�	INTEGER TYPES

Integer type� XE "Integer type" �s are used to describe whole numbers.

The definition of an integer type� XE "Integer type" � specifies the range of values taken into account. In the first example (see figure � REF F_Source_Packet * MERGEFORMAT �2-3�), the “Source Sequence Count” field is a 14-bit field, which contains a straight sequential count (modulo 16384) of each generated packet. Such a counter is described using an EAST integer type as follows:

type COUNTER is range 0 .. 16383;

Example �SEQ chapitre \c�3�-�SEQ exemple�10�: Integer Type Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�10�	Integer Type Declaration"�

In this example, 0 is the lower bound, i.e., the minimum value of the type, and 16383 is the upper bound, i.e., the maximum value of the type.

The EAST length clauses must be used to specify the integer size:

for COUNTER'size use 14; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�11�: Length Clause� XE "Length clause" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�11�	Length Clause Declaration"�

Data products are often dated. The CCSDS recommends standard dates and times. For example, the DATE_YMD provides the year, the month and the day within the Gregorian calendar. The binary representation of this type is described using integer type� XE "Integer type" �s as follows:

type YEAR is range 0 .. 9999;�for YEAR'size use 16;

type MONTH is range 1 .. 12;�for MONTH'size use 8;

type DAY is range 1 .. 31;�for DAY'size use 8;

Example �SEQ chapitre \c�3�-�SEQ exemple�12�: Complete Integer Type Declarations�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�12�	Complete Integer Type Declarations"�

Rule about the Usage of Integer Types

Rule �SEQ regle�6�		The size of an integer type must always be specified. See section 3.2.4. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

�	REAL TYPES

The definition of a real type specifies the number of significant digits and may specify additionally the range of values taken into account. The EAST length clauses must be used to specify the real size.

In the figure � REF F_Orbit_Location * MERGEFORMAT �2-4�, the orbit location is defined by the semi-major axis in kilometers, the eccentricity, the inclination in degrees, the argument of perigee in degrees, the right ascension in ascending node in degrees and the true anomaly in degrees. All these measurements are described using floating point reals. But the range of values or the precision of the measurements is not the same for kilometers or degrees, as shown in the following example:

type ANGULAR_DEGREE is digits 8 range -180.0 .. 180.0;-- the range is specified�for ANGULAR_DEGREE'size use 64; -- bit �

type KILOMETERS is digits 15;	-- the range is not specified�for KILOMETERS'size use 64;

Example �SEQ chapitre \c�3�-�SEQ exemple�13�: Complete Real Type� XE "Real type" � Declarations�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�13�	Complete Real Type Declarations"�

NOTE	�SYMBOL 45 \f "Symbol"�	If the real type declaration specifies no range, the range is by default the largest range that can be implemented within the specified number of bits accommodating the number of significant digits. The default range also depends on the convention used to represent the binary values of the real types (see � REF _Ref349616981 \n �3.3.4�).

Rule about the Usage of Real Type� XE "Real type" �s

Rule �SEQ regle�7�	The size of a real type must always be specified. See section 3.2.4. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

�	RECORD TYPES

As it is often necessary to aggregate different types of data, EAST provides a concept of record to structure “atomic” data items or even other aggregations. The aggregated data items are explicitly named, when they are used in a record type definition. Every component of an aggregation is therefore declared as follows:

	Data_Instance_Name: Data_Type_Name;

NOTE	�SYMBOL 45 \f "Symbol"�	If the Data_Type_Name corresponds to an array type for which the number of elements is not specified at definition time, then the Data_Type_Name is followed in the component declaration by explicit indices� XE "Index" � that specify the actual number of elements (see � REF _Ref349617028 \n �3.2.7�)

In the case of the figure � REF F_Source_Packet * MERGEFORMAT �2-3�, the leftmost branch of the tree would be:

-- “Atomic” types�type VERSION is (VERSION_1 , VERSION_2);�for VERSION'size use 3;�for VERSION use (VERSION_1 => 2#000#, VERSION_2 => 2#100#);�

type PACKET_TYPE is (TELEMETRY , TELECOMMAND);�for PACKET_TYPE'size use 1;�for PACKET_TYPE use (TELEMETRY => 0 , TELECOMMAND => 1);�

type PRESENCE_FLAG is (ABSENT , PRESENT);�for PRESENCE_FLAG'size use 1;�for PRESENCE_FLAG use (ABSENT => 0, PRESENT => 1);�

type PROCESS_IDENTIFICATION is (WORKING , IDLE);�for PROCESS_IDENTIFICATION'size use 11;�for PROCESS_IDENTIFICATION use (WORKING => 2#00000000000#, �						IDLE => 2#11111111111);

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple�14�: Record Type� XE "Record type" � Declaration (1 of 2)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�14�	Record Type Declaration"�

�.../...

-- Structuring type �type PACKET_IDENTIFICATION_TYPE is �	record�		VERSION_NUMBER : VERSION;�		PACKET : PACKET_TYPE;�		SECONDARY_HEADER_FLAG : PRESENCE_FLAG;�		APPLICATION_PROCESS_ID : PROCESS_IDENTIFICATION; �	end record;�for PACKET_IDENTIFICATION_TYPE'size use 16;

Example �SEQ chapitre \c�3�-�SEQ exemple \c�14�: Record Type� XE "Record type" � Declaration (2 of 2)

NOTE	�SYMBOL 45 \f "Symbol"�	As for atomic data type specification (enumeration, integer and real types) a length clause specifies the size of a record.

Within a structuring type, it is also possible to specify that a kind of data is present in some cases. For example, the SECONDARY_HEADER of figure � REF F_Source_Packet * MERGEFORMAT �2-3� is only present if the SECONDARY_HEADER_FLAG has the value PRESENT:

type PACKET_HEADER (�	SECONDARY_HEADER_FLAG: PRESENCE_FLAG := PRESENT) is�	record�		PRIMARY_HEADER: PRIMARY_HEADER_TYPE; �		-- see previous record type declaration�		case SECONDARY_HEADER_FLAG is�			when PRESENT =>�				SECONDARY_HEADER: SECONDARY_HEADER_TYPE;�			when ABSENT =>�				null; -- no corresponding field�		end case;�	end record;

Example �SEQ chapitre \c�3�-�SEQ exemple�15�: Record Type� XE "Record type" � Declaration with Optional Field�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�15�	Record Type Declaration with Optional Field"�

NOTES

1	In this example, the instance SECONDARY_HEADER_FLAG of the type PRESENCE_FLAG (that has the default value PRESENT) determines (i.e., discriminates) the presence of another component (SECONDARY_HEADER). This component is called a discriminant.

2	In this example, the length of the record depends on the value of “SECONDARY_HEADER_FLAG” (the discriminant� XE "Discriminant" �). In one case, the length is the length of the discriminant + the length of the primary header; in the other one, the length of the discriminant + the length of the primary header + the length of the secondary header. No length clause is therefore provided for the record.

Rules about the usage of record types

Rule �SEQ regle�8�	A component on which depends the existence of other components is called a discriminant� XE "Discriminant" � for the record type. The alternative lists of components are called variants of the record. See section 3.2.1.6. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�9�	A length clause must be provided for a record, every time it is possible. In some cases, no length clause can be provided for the record, because the length is undefined. See section 3.2.4.1. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

The EAST syntax requires a default value for each discriminant� XE "Discriminant" � (if any) in a record type declaration. A default value does not preclude any possible value for the discriminant of the actual data. In the case of the type “PACKET_HEADER”, the default value could have been ABSENT or PRESENT (or in fact any allowed value for the enumeration type “PRESENCE_FLAG”).

Another rule about the usage of record types

Rule �SEQ regle�10�	If a record contains one or more discriminants, it is mandatory to provide a default discriminant� XE "Discriminant" � value for each of them. See section 3.2.1.6. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

�	ARRAY TYPES

Array type� XE "Array type" �s are used to describe repetitions. If a telemetry contains a repetition of a certain number of measurements or blocks of measurements, this number being either a constant� XE "Constant" � or a variable� XE "Variable" �, this repetition would be defined using an array type. The next example defines an array type which has a constant number of elements:

type MEASUREMENT is digits 4; -- real type with a precision of 4 significant digits�for MEASUREMENT'size use 32;�

type TEN_MEASUREMENT_BLOCK_TYPE�	is array (1 .. 10) of MEASUREMENT;�for TEN_MEASUREMENT_BLOCK_TYPE'size use 320; �� 10*32 bits

Example �SEQ chapitre \c�3�-�SEQ exemple�16�: Array Type� XE "Array type" � Declaration with a Constant� XE "Constant" � Number of Elements�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�16�	Array Type Declaration with a Constant Number of Elements"�

In this example, a length clause specifies the size of the array, because its size is known; i.e., the array has a constant� XE "Constant" � number of elements. The declaration of an instance of this type is:

BLOCK : TEN_MEASUREMENT_BLOCK_TYPE;

Example �SEQ chapitre \c�3�-�SEQ exemple�17�: Array Instance Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�17�	Array Instance Declaration"�

If there is a need to describe data of the same type for which the number of occurrences varies, then an array with unlimited size (specified with “range <>”) is the suitable structure. The next example defines an array type which has a variable� XE "Variable" � number of elements:

type NUMBER is range 0 .. 65535;�for NUMBER'size use 16;�

type UNLIMITED_MEASUREMENT_BLOCK_TYPE �	is array (NUMBER range <>) of MEASUREMENT;

Example �SEQ chapitre \c�3�-�SEQ exemple�18�: Array Type� XE "Array type" � Declaration with a Variable� XE "Variable" � Number of Elements�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�18�	Array Type Declaration with a Variable Number of Elements"�

NOTES

1	In this example, no length clause specifies the size of the array, because its size is not known.

2	The expression “NUMBER range <>” means that the range (or the index� XE "Index" �) of the array in an instance of this array type will be defined by a range of NUMBER (i.e., by two values of the type NUMBER which specify the bounds of the array index: “1 .. 10” or “1 .. 100” in example � REF E_Array_Instance * MERGEFORMAT �3-19�).

Using this array type declaration, possible declarations would be:

A_10_MEASUREMENT_BLOCK : �	UNLIMITED_MEASUREMENT_BLOCK_TYPE (1 .. 10);�

A_100_MEASUREMENT_BLOCK : �	UNLIMITED_MEASUREMENT_BLOCK_TYPE (1 .. 100);

Example �SEQ chapitre \c�3�-�SEQ exemple�19�: Array Instance Declarations�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�19�	Array Instance Declarations"�

When the number of elements of an array is specified “at run time” within the data block, the suitable EAST structure to describe it is a record type including a component that specifies the size of the array and the array itself.

-- atomic type declarations�type NUMBER is range 0 .. 65535;�for NUMBER'size use 16;�

type MEASUREMENT is digits 4;�for MEASUREMENT'size use 32;�

-- array type definition�type UNLIMITED_MEASUREMENT_BLOCK_TYPE is array �	(NUMBER range <>) of MEASUREMENT;�

-- structuring type definition�type DATA_SET(NUMBER_OF_ELEMENTS : NUMBER := 1) is record�	DATA : UNLIMITED_MEASUREMENT_BLOCK_TYPE�		(1 .. NUMBER_OF_ELEMENTS);�end record;

Example �SEQ chapitre \c�3�-�SEQ exemple�20�: Use of an Array Type� XE "Array type" � with a Variable� XE "Variable" � Number of Elements�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�20�	Use of an Array Type with a Variable Number of Elements"�

The declaration of a datum of this type is:

A_DATA_SET : DATA_SET;(F�SEQ note�6�)

Example �SEQ chapitre \c�3�-�SEQ exemple�21�: Array Instance Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�21�	Array Instance Declaration"�

NOTE	�SYMBOL 45 \f "Symbol"�	The instance A_DATA_SET corresponds to a data item of the type DATA_SET, the number of elements being not known “at definition time” but only specified at “run time”. A data instance is composed of a number of elements and measurements (as many as specified by the leading number).

A special use of arrays with variable� XE "Variable" � number of elements

When unlimited array types (also called unconstrained array types) are limited in a declaration, null arrays can serve to specify that there is no data of this particular type within a given data set. To declare null arrays, the value of the lower bound of the array index� XE "Index" � has to be greater than the upper bound.

Using the record type declaration of the previous example:

A_DATA_SET : DATA_SET(0);	-- zero element

Example �SEQ chapitre \c�3�-�SEQ exemple�22�: Null Array Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�22�	Null Array Declaration"�

NOTE	�SYMBOL 45 \f "Symbol"�	In this case, the lower bound (1) of the index� XE "Index" � of the array DATA is greater than the upper bound (0), which means that the array has no component. Note that the type NUMBER must allow values less than the lower bound of the array index.

Rules about the usage of array types

Rule �SEQ regle�11�	A length clause must be provided for an array, every time it is possible. For unconstrained array types, no length clause can be provided because they have an undefined number of elements. The number of elements is specified at the declaration of a data of this type. See section 3.2.4.1. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�12�	In the case of an unconstrained array, the constraint (i.e., the number of elements) is given to the instance at its declaration. See section 3.2.1.5. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�13�	If the lower bound of an index� XE "Index" � range is greater than the upper bound, the corresponding array row/column has no component. See section 3.2.1.5. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

�	SUBTYPES

EAST allows the specification of user types to describe families of data. EAST provides a facility to define sub-families, i.e., families of the same type but with a different spectrum of data. In other words, EAST allows the definition of subtypes to restrict the set of values of the initial type. The subtyping can be used to rename types, if the initial set of values is not restricted in the subtype� XE "Suptype" � declaration. See below some examples:

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);�for DAY'size use 8;�subtype� XE "Suptype" � RESTING_DAY is DAY range SAT .. SUN; �subtype WORKING_DAY is DAY range MON .. FRI; �

type DEGREE is digits 15;�for DEGREE'size use 64;�subtype� XE "Suptype" � ANGULAR_DEGREE is DEGREE range -180.0 .. 180.0; �subtype CELSIUS_DEGREE is DEGREE range -273.0 .. 100000000000000.0; ��subtype IDENTIFIER is STRING; -- renaming subtype

Example �SEQ chapitre \c�3�-�SEQ exemple�23�: Subtype� XE "Suptype" � Declarations�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�23�	Subtype Declarations"�

NOTES

1	No length clauses are provided in subtype� XE "Suptype" � definitions.

2	A subtype� XE "Suptype" � is considered to be a type, so it is permissible to subtype subtypes.

�	VARIABLES

Variables are used to name explicitly the exchanged data. Variables are declared using types that have been previously declared.

There is a different use of type declarations and variable� XE "Variable" � (data) declarations. A type declaration is used to describe the kind of a “generic datum”. The declaration of a variable is used to explicitly declare a physical occurrence of a datum of this type. For example, the declaration of ANGULAR_DEGREE, which is a 64 bit real type, can be used to declare many data occurrences (INCLINATION, TRUE_ANOMALY, etc.).

-- declaration of types�type ANGULAR_DEGREE is digits 8 range -180.0 .. 180.0;�for ANGULAR_DEGREE'size use 64;�type KILOMETERS is digits 15;�for KILOMETERS'size use 64;�

-- declaration of variables�SEMI_MAJOR_AXIS : KILOMETERS;�INCLINATION : ANGULAR_DEGREES;�ARGUMENT_OF_PERIGEE : ANGULAR_DEGREES;�RIGHT_ASCENSION_IN_ASCENDING_NODE : ANGULAR_DEGREES;�TRUE_ANOMALY : ANGULAR_DEGREES;

Example �SEQ chapitre \c�3�-�SEQ exemple�24�: Declaration of Variables�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�24�	Declaration of Variables"�

�	CONSTANTS

EAST provides a facility for expressing constants. Constants of any type may be declared. A constant� XE "Constant" � is not a type. A constant has a static value. See below some examples of constant declarations:

-- type declarations�type PACKET_TYPE is (TELEMETRY , TELECOMMAND);�for PACKET_TYPE use (TELEMETRY => 0 , TELECOMMAND => 1);�for PACKET_TYPE'size use 1;�

type NUMBER is range 0 .. 65535;�for NUMBER'size use 16;�

-- constant� XE "Constant" � declarations�DORIS_PACKET : constant PACKET_TYPE := TELEMETRY; �		-- an enumeration constant�MAX_NUMBER : constant NUMBER := 255;�		-- an integer constant

Example �SEQ chapitre \c�3�-�SEQ exemple�25�: Constant� XE "Constant" � Declarations�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�25�	Constant Declarations"�

Constants can be used mainly for two purposes:

�SYMBOL 45 \f "Symbol"�	as range bounds in type or subtype� XE "Suptype" � definitions, or in other constant� XE "Constant" � declarations (the final purpose being to be used as range bounds); in this case, they are declared in the section of type declarations;

�SYMBOL 45 \f "Symbol"�	as markers (i.e., end-delimiters of repetitions) when defined in the section for the declaration of variables.

	Use of constants in the section of type declarations

The constant MAX_NUMBER, defined in the example �SEQ chapitre \c�3�-�SEQ exemple E_Constant�25�, can be used in other type or constant� XE "Constant" � definitions as follows:

type MEASUREMENT_BLOCK_TYPE�	is array (1 .. MAX_NUMBER) of MEASUREMENT;�	-- use of the constant� XE "Constant" � in an array type declaration��type MEASUREMENT_COUNTER is range 0 .. MAX_NUMBER;�	-- use of the constant in an integer type� XE "Integer type" � declaration��MEAN_NUMBER : constant NUMBER := (MAX_NUMBER + 1) / 2;

	-- use of a constant in another constant declaration

Example �SEQ chapitre \c�3�-�SEQ exemple�26�: Use of Constants (1)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�26�	Use of Constants (1)"�

A constant� XE "Constant" � that is declared in the section of type declarations is either an integer constant, a real constant or an enumeration constant.

A number declaration is a special form of a constant� XE "Constant" � declaration with no specified type. See below some examples:

PI : constant� XE "Constant" � := 3.1415926536;	-- a real number�ZERO : constant := 0;		-- an integer number

Example �SEQ chapitre \c�3�-�SEQ exemple�27�: Number Declarations�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�27�	Number Declarations"�

A number can be used in a constant� XE "Constant" � definition as follows:

RIGHT_ANGLE : constant := PI/2;�	-- use of a constant in another constant declaration

Example �SEQ chapitre \c�3�-�SEQ exemple�28�: Use of Constants (2)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�28�	Use of Constants (2)"�

Non-typed constants (or numbers) can also be used in range definitions. It is an EAST facility for the definition of types. The following definitions,

MIN : constant� XE "Constant" � := 1;�MAX : constant := 255;�type VALUE is range MIN .. MAX;

Example �SEQ chapitre \c�3�-�SEQ exemple�29�: Use of Non-typed Constants (1)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�29�	Use of Non-typed Constants (1)"�

are strictly equivalent to the following definition:

type VALUE is range 1 .. 255;

Example �SEQ chapitre \c�3�-�SEQ exemple�30�: Use of Non-typed Constants (2)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�30�	Use of Non-typed Constants (2)"�

No implementation types are associated with these numbers. In the previous examples, the main difference between MAX_NUMBER (defined in the example �SEQ chapitre \c�3�-�SEQ exemple E_Constant�25�) and MAX (defined in the example �SEQ chapitre \c�3�-�SEQ exemple E_Number�29�) is the knowledge or non-knowledge of the representation of the values: MAX_NUMBER is a 16-bit unsigned integer, while MAX is physically undefined (i.e., is just a logical concept).

	Use of constants in the section for the declaration of variables

A constant� XE "Constant" � can be used as a marker� XE "Marker" � when its definition occurs after a declaration of a variable� XE "Variable" �. In this case, the following convention is applicable:

Rule �SEQ regle�14�	The variable� XE "Variable" � that is declared immediately before the constant� XE "Constant" � occurs an undetermined number of times, the last instance being followed by the constant value. See section 3.2.3.2.2. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

The following example illustrates the use of markers:

-- Section of Data Type Declarations�type DEGREE is digits 15;�for DEGREE’size use 64;�.../...��-- Section of Data Occurrence Declarations�MEASUREMENT : DEGREE;�END_OF_MEASUREMENT_BLOCK : constant� XE "Constant" � STRING := “END”;

Example �SEQ chapitre \c�3�-�SEQ exemple�31�: Use of Constants as Markers�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�31�	Use of Constants as Markers"�

Figure � REF F_Marker * MERGEFORMAT �3-1� represents the data described by the previous EAST description:

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure \r 1�1�: Data Block ended by a Marker�TC \f G "�SEQ chapitre \c�3�-� SEQ figure \c�1�	Data Block ended by a Marker"�� XE "Marker" �

A constant� XE "Constant" � that is declared in the section for the declaration of variables is an integer constant, an enumeration constant, a character constant or a character string constant.

NOTE	�SYMBOL 45 \f "Symbol"�	Real constants are not allowed as markers because markers should be unambiguously recognized. The representation of a real value is a floating point representation, and is as such an approximation of the original value.

A special case of markers : EOF

A special marker� XE "Marker" � is the "end of file". This marker is encountered at the end of the data file. It does not correspond to any bit pattern to be found in the data. File management systems do not indeed restore the "end of file".

It is encountered at the end of the data file. The following convention is adopted: the type of the Marker� XE "Marker" � is an EAST predefined type, called EOF. No explicit value is associated with this constant� XE "Constant" � since this value is unknown. This is the only case of a constant declaration where the value is absent.

NOTE	�SYMBOL 45 \f "Symbol"�	The EOF marker� XE "Marker" � can only be used once in an EAST description. It is the last declaration of the logical description part.

The next example presents the description of a data file that contains a header and n values (n, being undetermined).

HEADER : HEADER_TYPE; -- any type��VALUE : COEFFICIENT; 	-- COEFFICIENT is a real type defined in 3.2.1.4 as:�				-- type COEFFICIENT is digits 10 range 0.0 .. 1.0;��END_OF_COEFFICIENTS : constant� XE "Constant" � EOF ;

Example �SEQ chapitre \c�3�-� SEQ exemple�32�: EOF Marker� XE "Marker" � Declaration�TC \f T "�SEQ chapitre \c�3�-� SEQ exemple \c�32�	EOF Marker Declaration"�

Only typed constants are allowed as markers.

�	RECORD REPRESENTATION CLAUSES

Subsection � REF _Ref349617074 \n �3.2.6� recommends record types for the specification of structured data. In order to specify the exact location of data items in a record, EAST provides record representation clauses(F�SEQ note�7�).

A record representation clause specifies the storage representation of the record, that is, the relative position and the size of the record components (including discriminants if any).

The following example illustrates a simple kind of record and its associated representation clauses:

0� 63� 64� 127 ��Right_Ascension_Ascending_Node�(64 bits)�Inclination�(64 bits)��

type DEGREE is digits 15;�for DEGREE'size use 64;�

type ORBIT_PLAN_LOCATION is record�	RIGHT_ASCENSION_ASCENDING_NODE : DEGREE;�	INCLINATION : DEGREE;�end record;

for ORBIT_PLAN_LOCATION use�	record�		RIGHT_ASCENSION_ASCENDING_NODE 	at 0 range 0 .. 63;�		INCLINATION 					at 0 range 64 .. 127;�	end record;�for ORBIT_PLAN_LOCATION'size use 128; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�33�: Complete Record Type� XE "Record type" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�33�	Complete Record Type Declaration"�

This example illustrates the fact that there is no gap between components of a record, and that the component locations do not overlap.

NOTE	�SYMBOL 45 \f "Symbol"�	The expression “at 0” in the component locations means that the range that follows the expression is specified relatively to the beginning (i.e., location 0) of the record. More explanations about this expression are provided on page � PAGEREF Word �3-32�.

�The next example shows that component locations may overlap if they do not belong to the same alternative list of components:

0� 15 � 16 17� 18�337 ��Synchro�(16 bits)�Flag�(2 bits)�House_Keeping_Block�(320 bits)����Measurement_Block�(320 bits)��

type ACTIVITY_FLAG is (HOUSE_KEEPING, MEASUREMENT, INCIDENT);�for ACTIVITY_FLAG'size use 2;�

type STRUCTURE (FLAG : ACTIVITY_FLAG := MEASUREMENT) is record�	SYNCHRO: SYNCHRONIZATION_VALUE;�	case FLAG is�		when HOUSE_KEEPING =>�			HOUSE_KEEPING_BLOCK : BLOCK_TYPE;�		when MEASUREMENT =>�			MEASUREMENT_BLOCK : BLOCK_TYPE;�		when others =>�			null;�	end case;�end record;�for STRUCTURE use�record�	SYNCHRO at 0 range 0 .. 15;�	FLAG at 0 range 16 .. 17;�	HOUSE_KEEPING_BLOCK at 0 range 18 .. 337;�	MEASUREMENT_BLOCK at 0 range 18 .. 337;�end record;�for STRUCTURE'size use 336; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�34�: Complete Record Type� XE "Record type" � Declaration with Variants�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�34�	Complete Record Type Declaration with Variants"�

The clause “when others =>” is mandatory if all the discriminant� XE "Discriminant" � values are not explicitly named in the record type definition. It represents all the other discriminant values. In other words, all the occurrences of the discriminant must be named, either explicitly or implicitly, in a case statement.

NOTE	�SYMBOL 45 \f "Symbol"�	In this example, “when others =>” could have been replaced by “when INCIDENT =>”.

One of the most interesting uses of record representation clauses is illustrated in the following example, which explains that component representation clauses do not have to appear in the same order as the declaration order. The EAST Syntax requires indeed the fixed elements to be declared before the optional ones in a structure; nevertheless, in record representation clauses, one or more elements of the fixed part are allowed to be put after a variant� XE "Variant" � part, if and only if the variant part has a constant� XE "Constant" � length.

0� 9 �10�11� 31� 32�63 ��Header �(10 bits)�Flag�(1 bit)�Optional_Part_1�(21 bits)�Fixed_Part�(32 bits)����Optional_Part_2�(21 bits)���

type STATUS is (OPEN, CLOSED);�for STATUS'size use 1;�

type STRUCTURE (FLAG : STATUS := OPEN) is record�	HEADER : HEADER_TYPE;�	FIXED_PART : FIXED_PART_TYPE;�	case FLAG is�		when OPEN =>�			OPTIONAL_PART_1 : OPTIONAL_PART_1_TYPE;�		when CLOSED =>�			OPTIONAL_PART_2 : OPTIONAL_PART_2_TYPE;�	end case;�end record;�-- But to describe the actual data type, �-- the use of record representation clauses is necessary.�for STRUCTURE use�record�	HEADER at 0 range 0 .. 9;�	FLAG at 0 range 10 .. 10;�	OPTIONAL_PART_1 at 0 range 11 .. 31;�	OPTIONAL_PART_2 at 0 range 11 .. 31;�	FIXED_PART at 0 range 32 .. 63;�end record;�for STRUCTURE'size use 64; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�35�: Use of Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" �s�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�35�	Use of Record Representation Clauses"�

The next example illustrates a record for which the size is not known a priori, and for which the record representation clause is partly provided.

0� 127� 128� 143 � 144�? ��Date�(128 bits)�Block_Size�(16 bits)�Block�(variable� XE "Variable" �)��

type STRUCTURE (BLOCK_SIZE : NUMBER := 1) is record�	DATE : DATE_FORMAT;�	BLOCK : UNLIMITED_MEASUREMENT_BLOCK_TYPE (1 .. BLOCK_SIZE);�end record;�

for STRUCTURE use�record�	DATE at 0 range 0 .. 127;�	BLOCK_SIZE at 0 range 128 .. 143;�end record;

Example �SEQ chapitre \c�3�-�SEQ exemple�36�: Incomplete Record Representation Clause (1)� XE "Record representation clause" �� XE "Representation clause" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�36�	Incomplete Record Representation Clause Declaration (1)"�

In this case, a representation clause cannot be given for the block, because the size (i.e., the location of the end of the block) is not known a priori. A length clause cannot therefore be provided.

By default, all components of a data block are contiguous. In this case, no representation clause is provided for the component BLOCK, but its location begins by default at bit 144.

�The next example is another illustration of a record for which the record representation clause is partly provided.

0� 127� 128� 143� 144 ?� ? ?��Date�(128 bits)�Block_Size�(16 bits)�Block�(variable� XE "Variable" �)�Trailer�(16 bits)��

type STRUCTURE (BLOCK_SIZE : NUMBER := 1) is record�	DATE : DATE_FORMAT;�	BLOCK : UNLIMITED_MEASUREMENT_BLOCK_TYPE (1 .. BLOCK_SIZE);�	TRAILER : TRAILER_TYPE;�end record;�

for STRUCTURE use�record�	DATE at 0 range 0 .. 127;�	BLOCK_SIZE at 0 range 128 .. 143;�end record;

Example �SEQ chapitre \c�3�-�SEQ exemple�37�: Incomplete Record Representation Clause (2)� XE "Record representation clause" �� XE "Representation clause" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�37�	Incomplete Record Representation Clause Declaration (2)"�

As in the previous example, a representation clause cannot be given for the block, because the size is not known a priori. A representation clause cannot be given for the trailer also, because its exact location is not known at definition time. Its size is known (16 bits) but it follows a component which has no representation clause. The trailer begins when the block ends.

In this case, the order of the components is not fully determined by the record representation clause. The order of the components, for which a representation clause is missing, is determined according to the order of these components within the record type definition.

�The following example illustrates a record for which the size is not known a priori, but for which a record representation clause completely specifies the storage representation of the record.

0� 9 �10�11�	 63 ��Header �(10 bits)�Flag�(1 bit)��Optional_Part_1� (53 bits)����Optional_Part_2�(21 bits)�����11�31 ���type STATUS is (OPEN, CLOSED);�for STATUS'size use 1;�

type STRUCTURE (FLAG : STATUS := OPEN) is record�	HEADER : HEADER_TYPE;�	case FLAG is�		when OPEN =>�			OPTIONAL_PART_1 : OPTIONAL_PART_1_TYPE;�		when CLOSED =>�			OPTIONAL_PART_2 : OPTIONAL_PART_2_TYPE;�	end case;�end record;�

for STRUCTURE use�record�	HEADER at 0 range 0 .. 9;�	FLAG at 0 range 10 .. 10;�	OPTIONAL_PART_1 at 0 range 11 .. 63;�	OPTIONAL_PART_2 at 0 range 11 .. 31;�end record;

Example �SEQ chapitre \c�3�-�SEQ exemple�38�: Complete Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�38�	Complete Record Representation Clause Declaration"�

A length clause cannot be provided for the whole structure, because the size of the optional part is not known a priori (53 bits or 21 bits).

�A component can depend, at the same time, on the values of many discriminants. The next example illustrates a record with two discriminants. Some components depend, at the same time, on the values of two enumeration components.

0� 15� 16 17�18 25� 26�345 ��Synchro�(16 bits)�Flag�(2 bits)�Time�(8 bits)�Monday_House_Keeping_Block�(320 bits)�����Other_House_Keeping_Block�(320 bits)�����Measurement_Block�(320 bits)��

type ACTIVITY_FLAG is (HOUSE_KEEPING, MEASUREMENT, INCIDENT);�for ACTIVITY_FLAG'size use 2;��type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);�for DAY'size use 8;��type STRUCTURE (FLAG : ACTIVITY_FLAG := MEASUREMENT;�				TIME : DAY := MON) is record�	SYNCHRO: SYNCHRONIZATION_VALUE;�	case FLAG is�		when HOUSE_KEEPING =>�			case TIME is�				when MON =>�					MONDAY_HOUSE_KEEPING_BLOCK : BLOCK_TYPE;				when TUE .. SUN =>�					OTHER_HOUSE_KEEPING_BLOCK : BLOCK_TYPE;�			end case;�		when MEASUREMENT=>�			MEASUREMENT_BLOCK : BLOCK_TYPE;�		when others =>�			null;�	end case;�end record;

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple�39�: Complete Record Type� XE "Record type" � Declaration with 2 Discriminants (1 of 2)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�39�	Complete Record Type Declaration with 2 Discriminants"�

�.../...

for STRUCTURE use�record�	SYNCHRO at 0 range 0 .. 15;�	FLAG at 0 range 16 .. 17;�	TIME at 0 range 18 .. 25;�	MONDAY_HOUSE_KEEPING_BLOCK at 0 range 26 .. 345;�	OTHER_HOUSE_KEEPING_BLOCK at 0 range 26 .. 345;�	MEASUREMENT_BLOCK at 0 range 26 .. 345;�end record;�for STRUCTURE'size use 346; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple \c�39�: Complete Record Type� XE "Record type" � Declaration with 2 Discriminants (2 of 2)

When the activity is House Keeping, the House Keeping Block varies with the Time values. When the activity is Measurement, the Measurement Block does not depend on the Time. When the activity is Incident, nothing else is present in the data.

The storage location of a component, relative to the start of the record, has been expressed until now in bits (the expression after the keyword at has been set to 0). For large structures, the values of expressions given after the reserved word range can be huge (see next example).

0� 127� 128� 447� 448 457� 458�777��Date�(128 bits)�Block�(320 bits)�Interval�(10 bits)�Block_After_Interval�(320 bits)��

type STRUCTURE is record�	DATE : DATE_FORMAT;�	BLOCK : MEASUREMENT_BLOCK_TYPE;�	INTERVAL: TIME_COUNTER;�	BLOCK_AFTER_INTERVAL: MEASUREMENT_BLOCK_TYPE;�end record;�

for STRUCTURE use�record�	DATE at 0 range 0 .. 127;�	BLOCK at 0 range 128 .. 447;�	INTERVAL at 0 range 448 .. 457;�	BLOCK_AFTER_INTERVAL at 0 range 458 .. 777;�end record;�

for STRUCTURE 'size use 778; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�40�: Big Record Type� XE "Record type" � Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�40�	Big Record Type Declaration"�

So the EAST syntax also allows one to express the relative position of a component in a distance� XE "Distance" �, called word, to which a number of bits is added. EAST allows two units for the distance: a 16-bit word or a 32-bit word.

The location of BLOCK_AFTER_INTERVAL of the last example is:

–	the 459th bit; or

–	the 11th bit in the word 28 (i.e., in the 29th word), if the chosen unit is a 16-bit word; or

–	the 11th bit in the word 14 (i.e., in the 15th word), if the chosen unit is a 32-bit word.

The distance� XE "Distance" � is specified using two predefined identifiers: WORD_16_BITS� XE "WORD_16_BITS" � and WORD_32_BITS� XE "WORD_32_BITS" �(F�SEQ note�8�) that always represent 16 bits, respectively 32 bits, on any architecture.

Using this facility, the previous example becomes:

type STRUCTURE is record�	DATE : DATE_FORMAT;�	BLOCK : MEASUREMENT_BLOCK_TYPE;�	INTERVAL: A_10_BIT_INTEGER;�	BLOCK_AFTER_INTERVAL : MEASUREMENT_BLOCK_TYPE;�end record;�

for STRUCTURE use�record�	DATE at 0 * WORD_32_BITS� XE "WORD_32_BITS" � range 0 .. 127;�	BLOCK at 4 * WORD_32_BITS range 0 .. 319;�	INTERVAL at 14 * WORD_32_BITS range 0 .. 10;�	BLOCK_AFTER_INTERVAL at 14 * WORD_32_BITS range 11 .. 331;�end record;��for STRUCTURE 'size use 778; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�41�: Big Record Type� XE "Record type" � Declaration Using Word Facility�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�41�	Big Record Type Declaration Using Word Facility"�

Rules about the usage of record representation clauses

Rule �SEQ regle�15�	The clause “when others =>” is mandatory if all the discriminant� XE "Discriminant" � values are not explicitly named in the record type definition. See section 3.2.16. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�16�	Component locations must not overlap, except if the components belong to distinct variants (i.e., belong to different alternative lists of components). See section 3.2.4.3. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�17�	The EAST Syntax requires the declaration of the fixed elements before the optional ones in a structure. See section 3.2.4.3. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�18�	Record representation clause� XE "Record representation clause" �s allow one or more elements of the fixed part to be placed after a variant� XE "Variant" � part, if and only if the variant part has a constant� XE "Constant" � length. See section 3.2.4.3. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�19�	A record representation clause must be provided every time it is possible. For variable components, representation clauses cannot be provided�. See section 3.2.4.3.of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�20�	The order of record components is determined by the record representation clause. If the record representation clause is incomplete, the order of the components that have no representation clause is determined from the order within the record type definition. See section 3.2.4.3. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

	VIRTUAL COMPONENTS

As seen in � REF _Ref349617137 \n �3.2.6�, record types represent structured data. Some of these structures are variable� XE "Variable" �. The variable part might be located deep in the structure, so that it is hidden from the root of the structure. It may be informative to announce, at the root level, that a structure is variable and what causes its variability. This is achieved by the use of discriminants (see � REF _Ref349617145 \n �3.2.6�).

But the duplication of discriminants at the highest level implies the presence, in the exchanged data, of data occurrences corresponding to the duplicated discriminants (see � REF _Ref349617159 \n �3.2.9�). To satisfy this need in spite of the implications, EAST proposes to prefix such discriminants with “VIRTUAL_”. The following rule is then applicable:

Rule �SEQ regle�21�	Each component identifier� XE "Identifier" � which begins with “VIRTUAL_” does not represent any data occurrence. See section 3.2.1.6. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

NOTE	�SYMBOL 45 \f "Symbol"�	In consequence, the use of the prefix “VIRTUAL_” is reserved for this specific use.

The example, presented in section � REF _Ref349617204 \n �2� and taken from the telemetry context, illustrates the use of virtual� XE "Virtual discriminant" � components. It presents a packet, which may be considered as a data block, containing a primary header, an optional secondary header, a source data block and some other data. The primary header is composed of a packet identification block, a sequence control block and the source data length. The packet identification may be precisely described by the version number, the type identification, the secondary header flag and the application process identification, etc.

Some components discriminate the presence or the size of other components: the secondary header flag discriminates the presence of the secondary header, and the source data length discriminates the size of the source data that are exchanged.

Figure � REF F_Packet_Structure * MERGEFORMAT �3-2� presents a packet structure.

�EMBED MSDraw * MERGEFORMAT���

Figure �SEQ chapitre \c�3�-� SEQ figure �2�: Discriminants in Version 1 “Source Packet” Format�TC \f G " �SEQ chapitre \c�3�-� SEQ figure \c�2�	Discriminants in Version 1 \"Source Packet\" Format"�

�This description can be formalized using EAST as follows:

-- basic data types used in the first branch�type VERSION is (VERSION_1, VERSION_2);�for VERSION use (VERSION_1 => 2#000#, VERSION_2 => 2#100#);�for VERSION'size use 3;

type PACKET_TYPE is (TELEMETRY , TELECOMMAND);�for PACKET_TYPE use (TELEMETRY => 0, TELECOMMAND => 1);�for PACKET_TYPE'size use 1;

type PRESENCE_FLAG is (ABSENT , PRESENT);�for PRESENCE_FLAG use (ABSENT => 0 , PRESENT => 1);�for PRESENCE_FLAG'size use 1;

type PROCESS_IDENTIFICATION is (WORKING , IDLE);�for PROCESS_IDENTIFICATION'size use 11;�for PROCESS_IDENTIFICATION use (WORKING => 2#00000000000#, �						IDLE => 2#11111111111);

-- structuring type for the Packet Identification�type PACKET_IDENTIFICATION_TYPE is record�	VERSION_NUMBER : VERSION;�	TYPE_ID : PACKET_TYPE;�	SECONDARY_HEADER_FLAG : PRESENCE_FLAG;�	APPLICATION_PROCESS_ID : PROCESS_IDENTIFICATION; �end record;�for PACKET_IDENTIFICATION_TYPE use�record�	VERSION_NUMBER at 0 range 0 .. 2;�	TYPE_ID at 0 range 3 .. 3;�	SECONDARY_HEADER_FLAG at 0 range 4 .. 4;�	APPLICATION_PROCESS_ID at 0 range 5 .. 15;�end record;�for PACKET_IDENTIFICATION_TYPE'size use 16;

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple�42�: EAST logical description of Version 1 “Source Packet” Format (1 of 3)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�42�	EAST logical description of Version 1 \“Source Packet\” Format"�

�.../...

-- basic data types used in the second branch�type STATUS is (CONTINUATION_SEGMENT, �	FIRST_SEGMENT,�	LAST_SEGMENT,�	UNSEGMENTED_PACKET);�for STATUS'size use 2;�for STATUS use (CONTINUATION_SEGMENT => 2#00#,�	FIRST_SEGMENT => 2#01#, �	LAST_SEGMENT => 2#10#,�	UNSEGMENTED_PACKET => 2#11#);

type COUNTER is range 0 .. 16383;�for COUNTER'size use 14 bits;

-- structuring type for the Packet Sequence Control�type PACKET_SEQUENCE_CONTROL_TYPE is record�	SEGMENTATION_FLAG : STATUS;�	SOURCE_SEQUENCE_COUNT : COUNTER;�end record;

for PACKET_SEQUENCE_CONTROL_TYPE use�record�	SEGMENTATION_FLAG at 0 range 0 .. 1;�	SOURCE_SEQUENCE_COUNT at 0 range 2 .. 15;�end record;

for PACKET_SEQUENCE_CONTROL_TYPE 'size use 16;

-- basic data types used in the other branches�type NUMBER is range 0 .. 65535;�for NUMBER'size use 16;

type OCTET is range 0 .. 255;�for OCTET'size use 8;

-- structuring types�type DATA_ARRAY is array (NUMBER range <>) of OCTET;

�subtype� XE "Suptype" � SECONDARY_HEADER_TYPE is DATA_ARRAY (1 .. 4);

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple \c�42�: EAST logical description of Version 1 “Source Packet” Format (2 of 3)

�.../...

type PRIMARY_HEADER_TYPE is record�	PACKET_IDENTIFICATION : PACKET_IDENTIFICATION_TYPE;�	PACKET_SEQUENCE_CONTROL : PACKET_SEQUENCE_CONTROL_TYPE;�	SOURCE_DATA_LENGTH : NUMBER;�end record;�for PRIMARY_HEADER_TYPE use�record�	PACKET_IDENTIFICATION at 0 range 0 .. 15;�	PACKET_SEQUENCE_CONTROL at 0 range 16 .. 31;�	SOURCE_DATA_LENGTH at 0 range 32 .. 47;�end record;�for PRIMARY_HEADER_TYPE'size use 48;�

type PACKET_FORMAT_TYPE(�	VIRTUAL_SECONDARY_HEADER_FLAG : PRESENCE_FLAG := PRESENT;�	-- point to the second header flag located in the first branch�	VIRTUAL_SOURCE_DATA_LENGTH : NUMBER := 256) �	-- point to the source data length located in the third branch�is record�	PRIMARY_HEADER : PRIMARY_HEADER_TYPE;�	case VIRTUAL_SECONDARY_HEADER_FLAG is�		when ABSENT =>�	SOURCE_DATA_0 : DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);�		when PRESENT =>�	SECONDARY_HEADER : SECONDARY_HEADER_TYPE;�	SOURCE_DATA_1 : DATA_ARRAY (1 .. VIRTUAL_SOURCE_DATA_LENGTH);�	end case;�end record;�for PACKET_FORMAT_TYPE use�record�	PRIMARY_HEADER at 0 range 0 .. 47;�	SECONDARY_HEADER at 0 range 48 .. 79; �end record;�

PACKET : PACKET_FORMAT_TYPE;

Example �SEQ chapitre \c�3�-�SEQ exemple \c�42�: EAST logical description of Version 1 “Source Packet” Format (3 of 3)

�The two virtual� XE "Virtual discriminant" � components “VIRTUAL_SECONDARY_HEADER_FLAG” and “VIRTUAL_SOURCE_DATA_LENGTH” do not really exist in the exchanged data block. They serve as a link between other data:

�SYMBOL 45 \f "Symbol"�	VIRTUAL_SECONDARY_HEADER_FLAG is supposed to have the value of the SECONDARY_HEADER_FLAG field in the PACKET IDENTIFICATION block, and conditions the existence of the SECONDARY_HEADER block. It serves as a link between these two fields.

�SYMBOL 45 \f "Symbol"�	VIRTUAL_SOURCE_DATA_LENGTH is supposed to have the value of the SOURCE_DATA_LENGTH field in the PRIMARY HEADER and conditions the size of the SOURCE DATA block. It serves as a link, too.

As an example, an occurrence of the variable� XE "Variable" � PACKET could be:

�SYMBOL 45 \f "Symbol"�	Virtual� XE "Virtual discriminant" �_Secondary_Header_Flag = Present, i.e., the data item called Secondary_Header_Flag (located in the 5th bit of the data occurrence) has the value PRESENT.

�SYMBOL 45 \f "Symbol"�	Virtual� XE "Virtual discriminant" �_Source_Data_Length = 0, i.e., the data item called Source_Data_Length (located from the 33rd bit through the 48th bit) has the value 0.

�SYMBOL 45 \f "Symbol"�	PRIMARY_HEADER : 48 bits

�SYMBOL 45 \f "Symbol"�	SECONDARY_HEADER : 32 bits

�SYMBOL 45 \f "Symbol"�	SOURCE_DATA : 0 bit

The size of this occurrence is, in this case, 80 bits (the virtual� XE "Virtual discriminant" � components being absent in any data occurrence).

--or---

�SYMBOL 45 \f "Symbol"�	Virtual� XE "Virtual discriminant" �_Secondary_Header_Flag = ABSENT, i.e., the data item called Secondary_Header_Flag (located in the 5th bit of the data occurrence) has the value ABSENT.

�SYMBOL 45 \f "Symbol"�	Virtual� XE "Virtual discriminant" �_Source_Data_Length = 10, i.e., the data item called Source_Data_Length (located from the 33rd bit through the 48th bit) has the value 10.

�SYMBOL 45 \f "Symbol"�	PRIMARY_HEADER : 48 bits

�SYMBOL 45 \f "Symbol"�	SECONDARY_HEADER : 0 bit

�SYMBOL 45 \f "Symbol"�	SOURCE_DATA : 80 bits

The size of this occurrence is, in this case, 128 bits (the virtual� XE "Virtual discriminant" � components being absent in any data occurrence).

Example �SEQ chapitre \c�3�-�SEQ exemple�43�: Occurrences of Version 1 “Source Packet” Format�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�43�	Occurrences of Version 1 \"Source Packet\" Format"�

The convention of virtual� XE "Virtual discriminant" � variables is used to extend the descriptive capabilities of EAST. It allows one to write more about the exchanged data, keeping the same structuring of the data.

NOTE	�SYMBOL 45 \f "Symbol"�	The two components “SOURCE_DATA_0” and “SOURCE_DATA_1” represent the same data. But their location in the exchanged data block is different. That is why they must have a different name.

Rule �SEQ regle�22�	EAST forbids identical names in a record. See section 3.2.1.6. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

�	FREQUENTLY ASKED QUESTIONS

Question �SEQ Question�1�	Are length clauses mandatory?

Answer �SEQ Reponse�1�	They are mandatory for basic data types (enumeration, integer and real types). They are mandatory for aggregation types (array and record types) if the size of the type is known at definition time.

Question �SEQ Question�2�	Are Enumeration Representation� XE "Enumeration representation clause" � Clause� XE "Representation clause" �s mandatory?

Answer �SEQ Reponse�2�	They are highly recommended for binary encoded enumeration types, but not mandatory. If not provided, default bit patterns are assumed: the integer value 0 is associated with the first enumeration literal, 1 is associated with the second one, and so on for every enumeration literal of the enumeration type.

		They are forbidden for ASCII encoded enumeration types.

Question �SEQ Question�3�	Must an enumeration length clause exactly fit the bit patterns associated with enumeration literals (provided or assumed)?

Answer �SEQ Reponse�3�	No. The size of an enumeration literal may be greater than needed. For example, an enumeration type defined by three alternative values can be mapped on a 2-bit type, but it could be defined with an 8-bit type. In this case, the three corresponding binary integer values are stored in the 8-bit field as an 8-bit integer.

Question �SEQ Question�4�	Integer type� XE "Integer type" �s and enumeration types can be used as discriminants in record types, either to determine the size of arrays or to determine the presence of any kind of component. Must these discriminants have a binary representation, or can they have an ASCII rep� XE "ASCII Representation" �resentation?

Answer �SEQ Reponse�4�	Both representations, binary and ASCII, are allowed to discriminate types. In particular, a string may be used as a discriminant� XE "Discriminant" �, if the possible occurrences of that string are well identified, i.e., define an enumeration type or an integer type (see � REF _Ref349617262 \n �3.2.5�).

Question �SEQ Question�5�	Why are length clauses not provided for subtypes?

Answer �SEQ Reponse�5�	A subtype� XE "Suptype" � defines restrictions (in the range) of an existing basic type. The size of the subtype is the same as the size of the type. It is therefore not necessary (and not allowed by the EAST syntax) to specify a length clause for a subtype because the type already has its length clause. Warning: one must define a new type if the size of the type, defined by the restricted values, is not the same as the size of the original type.

Question �SEQ Question�6�	Why are default values mandatory for discriminants?

Answer �SEQ Reponse�6�	Types allow the declaration of variables as seen in � REF _Ref349617310 \n �3.2.9�. In the case of variable� XE "Variable" � structures (i.e., records with discriminants), the corresponding variables do not have to be static structures in assigning explicit values to the discriminants. The following data declaration is not recommended because it sets forever the structure of the data which is supposed to be variable:

		HEADER : PACKET_HEADER(ABSENT); �-- This data has a constant� XE "Constant" � structure

		The suitable data declaration is:�HEADER : PACKET_HEADER; -- This data may have one of the two structures

Question �SEQ Question�7�	Are Record Representation Clause� XE "Record representation clause" �� XE "Representation clause" �s mandatory?

Answer �SEQ Reponse�7�	Yes, but they may be partially provided in some cases (e.g., if components are of variable� XE "Variable" � size or if components follow a variable size component).

�	PHYSICAL DESCRIPTIONS

	OVERVIEW

The physical description must be self sufficient. The receiving machine, called destination, does not have to know the emitting machine, called source. It does not have to refer to any documentation about the source either. So the physical representation must provide all data-storage related characteristics of the source, so that the destination is able to interpret the received data. These characteristics are:

�SYMBOL 45 \f "Symbol"�	the way of storing arrays on the medium, which, for multi-dimensional arrays, indicates whether the first or last index� XE "Index" � varies first when considering the elements stored on the medium (this characteristic is detailed in � REF _Ref349617380 \n �3.3.2�);

�SYMBOL 45 \f "Symbol"�	the way of storing octets on the medium, which, for multi-octet elements, indicates whether the most significant octet or the least significant octet is the first stored on the medium (this characteristic is detailed in � REF _Ref349617400 \n �3.3.3�);

�SYMBOL 45 \f "Symbol"�	the binary representation of logically defined basic types, which, for specific elements (integer and real), provides a bit-level description as well as the standard used to compute the numeric values from the bit-description (this characteristic is detailed in � REF _Ref349617419 \n �3.3.4�);

�SYMBOL 45 \f "Symbol"�	the ASCII rep� XE "ASCII Representation" �resentation of logically defined basic types (integer, real and enumeration types), which provides the number of characters used for their representation and, for ASCII enumeration types, provides also the list of the ASCII permitted values (this characteristic is detailed in � REF _Ref349617457 \n �3.3.5�).

The physical part is structured as follows:

�EMBED MSDraw * MERGEFORMAT���

Some of the frequently asked questions about the physical description part of EAST data descriptions are summarized in � REF _Ref349617532 \n �3.3.6�.

The only basic types for which a physical description must be provided are those defined in the logical description part. In some cases (see � REF _Ref349617631 \n �3.4.2�), the physical description part is empty.

The convention, adopted in this document, for the data representation on the medium is the following one:

�SYMBOL 45 \f "Symbol"�	In multi�octet elements, the first octet is drawn in the leftmost position and is called “Octet Zero”. Successive octets are assigned successively larger numbers.

octet 0�octet 1�octet 2�octet 3��

�SYMBOL 45 \f "Symbol"�	Within an octet, the first bit (which is the Most Significant Bit or MSB) is drawn in the leftmost position and is called “Bit Zero”. The Least Significant Bit (LSB) is in the rightmost position.

0�7��octet��MSB�LSB���	ARRAY STORAGE METHOD

The way of storing multidimensional arrays on the medium is one of the machine-dependent characteristics. This descriptive element is easy to understand: host machines have different ways of storing multi-dimensional arrays on the medium sometimes due to generating languages. The identified ways of storing arrays are either first_index� XE "Index" �_first or last_index_first. This attribute indicates how the sequence of the array elements is organized: in the first case, the first index varies first; in the second case, the last index varies first.

In the following example, a two-dimensional matrix of integer elements is defined:

-- Data types declarations�type ELEMENT is range 0 .. 200 ;�for ELEMENT'size use 8 ; -- bits

type MATRIX is array(1 .. 10 , 1 .. 10) of ELEMENT ;�for MATRIX'size use 800 ; -- bits

-- Data occurrence declaration�IMAGE : MATRIX;

Example �SEQ chapitre \c�3�-�SEQ exemple�44�: Two dimensional Matrix�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�44�	Two dimensional Matrix�

How will a data interpreter use the array storage information to access the data?

To access the element IMAGE(1,5) an interpreter uses the following algorithm:

If A is the address of the first element of IMAGE on the medium (the first element being IMAGE(1,1)):

�SYMBOL 45 \f "Symbol"� 	If the array storage method is last_index� XE "Index" �_first, then the element IMAGE(1,5) is the fifth element of the array. The address of this element is therefore (A + 4 * 8) because there are four elements before the fifth element and the size of one element is 8 bits, as specified by the representation clause of the ELEMENT type.

�SYMBOL 45 \f "Symbol"�	If the array storage method is first_index� XE "Index" �_first, then the element IMAGE(1,5) is the forty-first element of the array. The address of this element is therefore (A + 41 * 8).

The array storage method is information obviously necessary for the destination to interpret the received data. It is provided in the physical description using an enumeration type:

type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST,�	LAST_INDEX_FIRST) ;

Template �SEQ chapitre \c�3�-�SEQ template�1� of the Physical Description� XE "Physical description" �

Using this declaration, the actual way of storing the array is provided:

ARRAY_STORAGE : constant� XE "Constant" � ARRAY_STORAGE_METHOD :=�	FIRST_INDEX_FIRST; -- for example

Example �SEQ chapitre \c�3�-�SEQ exemple�45�: Array storage�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�45�	Array storage �

This declaration is applicable to the whole description.

By default (i.e. if this declaration is not available in the EAST description), the array storage is FIRST_INDEX_FIRST.

	OCTET STORAGE METHOD

Another characteristic of the source is the way of storing octets on the medium. This characteristic is a tricky point of the physical description.

A machine is said to be big-endian or little-endian depending on whether the MSB is in the lowest or highest addressed octet, i.e. in the first or last transmitted octet.

For a big-endian representation, the MSB is in the first transmitted octet, i.e. in the first octet on the medium, while it is in the last transmitted octet, i.e. in the last octet on the medium for a little-endian representation.

The little-endian representation for a data element can be viewed as storing the bits from least to most significant bit order, but then re-ordering the bits (from most to least significant) within each octet when output to some medium.

This machine-dependent characteristic is very important for a correct interpretation of the data. Its definition is given for multi-octets data elements, but is still applicable for every data element, whatever its length and its position (on octet boundary or not) within the data set.

The octet storage method has some impacts on basic types (enumeration, integer and real) as well as on aggregation types too (records and arrays).

The following is an example of a simple record used to illustrate the differences introduced by the source on the generated data:

Value (16 bits)�= 1345�Factor (8 bits)�= 8���

The logical description of this data structure is the following one:

type FACTOR_TYPE is range -10 .. 10;�for FACTOR_TYPE'size use 8; -- bits

type VALUE_TYPE is range 0 .. 65535;�for VALUE_TYPE'size use 16; -- bits

type STRUCTURE is�record�	VALUE : VALUE_TYPE;�	FACTOR : FACTOR_TYPE;�end record;�for STRUCTURE use�record�	VALUE at 0 range 0 .. 15;�	FACTOR at 0 range 16 .. 23;�end record;�for STRUCTURE 'size use 24; -- bits

DATA_STRUCTURE : STRUCTURE;

Example �SEQ chapitre \c�3�-�SEQ exemple�46�: Record with Elements on Octet Boundaries�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�46�	Record with Elements on Octet Boundaries�

On a SUN (or on any other big-endian architecture), the data structure corresponds to the following hexadecimal dump on the medium:

05 41 08

On a PC (or on any other little-endian architecture), the data structure corresponds to the following hexadecimal dump on the medium:

41 05 08

How will a data interpreter use the octet storage information to access the data?

The data that have been written by a SUN are interpreted using the following algorithm:

16#05 41 08# is read from the medium.�16#05 41 08# is also 2#0000 0101 0100 0001 0000 1000#�According to the record representation clauses of STRUCTURE: VALUE is located from bit 0 through bit 15: 2#0000 0101 0100 0001#, i.e., has the value 1345, FACTOR is located from bit 16 through bit 23: 2#0000 1000#, i.e., has the value 8.

The data that have been written by a PC are interpreted using the following algorithm:

16#41 05 08# is read from the medium.�41 is the least significant octet, while 05 is the most significant octet, because of the behavior of the PC architecture when writing data on a medium. A data interpreter has therefore to invert the octet first within each data item. The data structure becomes: 16#05 41 08# which is also 2#0000 0101 0100 0001 0000 1000#�According to the record representation clauses of STRUCTURE: VALUE is located from bit 0 through bit 15: 2#0000 0101 0100 0001#, i.e., has the value 1345, FACTOR is located from bit 16 through bit 23: 2#0000 1000#, i.e., has the value 8.

The following is another example of a simple record used to illustrate the differences introduced by the source on the generated data. In this case, the data items do not begin on an octet boundary.

Version (2 bits)�= 1�Value (16 bits)�= 1345�Factor (6 bits)�= 8��

�The logical description of this data structure is the following one:

type VERSION_TYPE is (ZERO, ONE, TWO);�for VERSION_TYPE use (ZERO => 0, ONE => 1, TWO => 2);�for VERSION_TYPE'size use 2; -- bits

type FACTOR_TYPE is range -10 .. 10;�for FACTOR_TYPE'size use 6; -- bits

type VALUE_TYPE is range 0 .. 65535;�for VALUE_TYPE'size use 16; -- bits

�type STRUCTURE is�record�	VERSION : VERSION_TYPE;�	VALUE : VALUE_TYPE;�	FACTOR : FACTOR_TYPE;�end record;�for STRUCTURE use�record�	VERSION at 0 range 0 .. 1;�	VALUE at 0 range 2 .. 17;�	FACTOR at 0 range 18 .. 23;�end record;�for STRUCTURE 'size use 24; -- bits

DATA_STRUCTURE : STRUCTURE;

Example �SEQ chapitre \c�3�-�SEQ exemple�47�: Record with Elements not on Octet Boundaries�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�47�	Record with Elements not on Octet Boundaries�

On a SUN (or on any other big-endian architecture), the data structure corresponds to the following hexadecimal dump on the medium:

41 50 48

On a PC (or on any other little-endian architecture), the data structure corresponds to the following hexadecimal dump on the medium:

05 15 20

How will a data interpreter use the octet storage information to access the data?

The data that have been written by a SUN are interpreted using the following algorithm:

16#41 50 48# is read from the medium.�16#41 50 48# is also 2#0100 0001 0101 0000 0100 1000#�According to the record representation clauses of STRUCTURE: VERSION is located from bit 0 through bit 1: 2#01#, i.e., has the value 1 (= ONE), VALUE is located from bit 2 through bit 17: 2#0000 0101 0100 0001#, i.e., has the value 1345, FACTOR is located from bit 18 through bit 23: 2#001000#, i.e., has the value 8.

The data that have been written by a PC are interpreted using the following algorithm:

16#05 15 20# is read from the medium.�In this case, the data items are not on octet boundaries. A simple octet inversion is not applicable. The solution is to invert each bit within each octet of the data structure, and then invert each bit within each data item.�16#05 15 20# is also 2#00000101 00010101 00100000#2�After the first bit inversion, the data structure becomes: �2#10100000 10101000 00000100#�After the other bit inversions, the data structure becomes: �2#01 0000010101000001 001000#�According to the record representation clauses of STRUCTURE: VERSION is located from bit 0 through bit 1: 2#01#, i.e., has the value 1 (= ONE), VALUE is located from bit 2 through bit 17: 2#0000 0101 0100 0001#, i.e., has the value 1345, FACTOR is located from bit 18 through bit 23: 2#001000#, i.e., has the value 8.

�The octet storage method is a way to indicate how to interpret the data. It is provided in the physical description using an enumeration type:

type BIT_ORDER is (HIGH_ORDER_FIRST,	-- big-endian representation�	LOW_ORDER_FIRST) ;	-- little-endian representation

Template �SEQ chapitre \c�3�-�SEQ template�2� of the Physical Description� XE "Physical description" �

Using this declaration, the actual way of storing octet is provided:

OCTET_STORAGE : constant� XE "Constant" � BIT_ORDER := HIGH_ORDER_FIRST; -- for example

Example �SEQ chapitre \c�3�-�SEQ exemple�48�: Octet storage�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�48�	Octet storage �

This declaration is applicable to the whole description.

By default (i.e. if this declaration is not available in the EAST description), the octet storage is HIGH_ORDER_FIRST.

�	BINARY REPRESENTATION OF SCALAR TYPES

There is no predefined scalar type(F�SEQ note�9�) (except CHARACTER type) provided by EAST for user data descriptions, so each scalar type must be explicitly defined by the user in the data description.

a)	Enumeration type� XE "Enumeration type" �s

Enumeration type� XE "Enumeration type" �s are defined by their possible values and their size in bits. A binary enumeration value is an integer value that is expected to be represented as a bit string that respects a standard format, defined as follows:

MSB�	LSB��

No binary representation is provided for a binary enumeration type. Negative values are represented in a two’s complement form.

b)	Integer type� XE "Integer type" �s

Integer type� XE "Integer type" �s are defined by their range and their size in bits. There are two kinds of integer types:

�SYMBOL 45 \f "Symbol"�	the integer type� XE "Integer type" �s, which are independent of the machine integer types (e.g., a 13-bit integer type);

�SYMBOL 45 \f "Symbol"�	the integer type� XE "Integer type" �s that can map with the integer types of the host machine, called “machine integer types” (e.g., a 16-bit signed integer type).

In the first case, the integer type� XE "Integer type" �s are not expected to be mapped on existing machine integer types. No binary representation is provided. The bit pattern of such integer types is supposed to respect a standard format, defined as follows:

MSB�	LSB��Warning:

�SYMBOL 45 \f "Symbol"�	If the range of the integer type� XE "Integer type" � allows negative values, then a sign bit is present and is then the leftmost bit. The sign convention is then by default the two’s complementation.

�SYMBOL 45 \f "Symbol"�	If the range of the integer type does not allow negative values, then there is no sign bit.

In the second case, the size is a multiple of octets, and a binary representation must therefore be specified. The binary representation of an integer type� XE "Integer type" � specifies the sign convention which indicates the complementation, if any, and the location of the bits from the MSB to the LSB, the sign location, if any, being the MSB.

Let’s take the example of a 16-bit integer generated by a PC (i.e., for which a binary representation is mandatory), which has the following bit pattern on a medium:

0�7�8�15��octet 0�octet 1��27 �20�215 �28��The most significant bit (if the integer is unsigned) or the sign bit (if it is signed) is the 9th bit encountered (bit 8). Then, a less significant bit is the 10th bit encountered (bit 9) and so on till the 16th bit. And then from bit 0 through bit 7, the bit 7 being the least significant bit of the integer. The bit ordering (from MSB to LSB) can also be expressed in a simple manner using ranges: (8 , 15) and (0 , 7).

How will a data interpreter use the binary representation of this integer to retrieve the value?

To compute an element coded with this 16-bit integer type� XE "Integer type" �, an interpreter uses the following algorithm:

�SYMBOL 45 \f "Symbol"�	If the integer is identified as a signed integer, then the sign bit is bit 8 and the MSB is bit 9. If it is identified as an unsigned integer, the MSB is bit 8.

�SYMBOL 45 \f "Symbol"�	If the integer is identified as a signed integer and if the sign bit has the value 1, the interpreter must complement the bit string.

�SYMBOL 45 \f "Symbol"�	The value is computed in multiplying each bit with its weight (the weight decreases from 215 (or 214 if a sign bit is present) for the MSB, to 20 for the LSB) and adding the result.

�The description of an integer binary representation using the EAST syntax is the following one:

type INTEGER_PHYSICAL_DESCRIPTION �		(NUMBER_OF_SUBFIELDS : SUBFIELD_NUMBER := 1)�is record�		COMPLEMENT : SIGN_CONVENTION;�		LOCATION : LOCATION_OF_FIELD(1 .. NUMBER_OF_SUBFIELDS);�end record;

Template �SEQ chapitre \c�3�-�SEQ template�3� of the Physical Description� XE "Physical description" �

SIGN_CONVENTION is defined as follows:

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,�		ONES_COMPLEMENT, TWOS_COMPLEMENT);

Template �SEQ chapitre \c�3�-�SEQ template�4� of the Physical Description� XE "Physical description" �

�SYMBOL 45 \f "Symbol"�	UNSIGNED is used for unsigned integer type� XE "Integer type" �s.

�SYMBOL 45 \f "Symbol"�	SIGN_AND_MAGNITUDE is used when the integer is interpreted as a sign bit location followed by a positive quantity. A MSB ‘1’ means a negative integer and a MSB ‘0’ means a positive integer.

�SYMBOL 45 \f "Symbol"�	ONES_COMPLEMENT is used when , the MSB being ‘1’, the absolute value of the negative integer is computed in inverting each bit (‘1’ becomes ‘0’ and ‘0’ becomes ‘1’).

�SYMBOL 45 \f "Symbol"�	TWOS_COMPLEMENT is used when , the MSB being ‘1’, the absolute value of the negative integer is computed in inverting each bit (‘1’ becomes ‘0’ and ‘0’ becomes ‘1’) and adding ‘1’ to the LSB.

�LOCATION_OF_FIELD is defined as an array of intervals declaring the location of subfields (these subfields are used to define the exact location of the integer bits).

type NATURAL_NUMBER is range 0 .. 65535;��type LOCATION_OF_SUBFIELD is record�		BEGINNING_AT_BIT_NUMBER : NATURAL_NUMBER;�		ENDING_AT_BIT_NUMBER : NATURAL_NUMBER;�end record;

MAXIMUM_NUMBER_OF_SUBFIELDS : constant� XE "Constant" � := 255;

type SUBFIELD_NUMBER is range �		1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>) �		of LOCATION_OF_SUBFIELD;

Template �SEQ chapitre \c�3�-�SEQ template�5� of the Physical Description� XE "Physical description" �

BEGINNING_AT_BIT_NUMBER of the first element of the array LOCATION_OF_FIELD is supposed to be the bit number of the MSB or the sign bit number, if any. Bit numbers continue in sequence until ENDING_AT_BIT_NUMBER of the last element of LOCATION_OF_FIELD, which is supposed to be the bit number of the LSB.

NOTES

1	The MAXIMUM_NUMBER_OF_SUBFIELDS is set to 255. The number of subfields that are necessary to locate the bits of an integer can be up to 255. It is an arbitrary value that is big enough to cover all the identified architectures.

2	The upper bound of NATURAL_NUMBER is set to 65535. It is an arbitrary value that seems to be large enough in this context.

Each time the bits of an integer are not contiguously located on the medium from the MSB to the LSB (see the previous example), several subfields are necessary to locate the bits of the integer.

The binary representation of a 16 bit signed integer on PC is:

Binary_Representation : constant� XE "Constant" � INTEGER_PHYSICAL_DESCRIPTION :=�		(NUMBER_OF_SUBFIELDS => 2,�		COMPLEMENT => TWOS_COMPLEMENT, �		LOCATION => (1 => (8,15) , -- first subfield (bit 8 through 15)�					2 => (0,7))); -- second subfield (bit 0 through 7)

Example �SEQ chapitre \c�3�-�SEQ exemple�49�: Binary Integer Type Physical Description (1)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�49�	Binary Integer Type Physical Description (1)"�� XE "Physical description" �

In this example, elements 1 and 2 of the LOCATION component are assigned to values (8,15) and (0,7). The whole binary representation indicates therefore that the sign bit is the 9th bit encountered (bit 8). Then, the most significant bit is the 10th bit encountered (bit 9), then, a less significant bit is the 11th bit encountered (bit 10), and so on till the 16th bit, and then from bit 0 through bit 7, bit 7 being the least significant bit of the integer.

The binary representation of a 16 bit unsigned integer on PC is:

Binary_Representation : constant� XE "Constant" � INTEGER_PHYSICAL_DESCRIPTION :=�		(NUMBER_OF_SUBFIELDS => 2,�		COMPLEMENT => UNSIGNED, �		LOCATION => (1 => (8,15) , -- first subfield (bit 8 through 15)�					2 => (0,7))); -- second subfield (bit 0 through 7)

Example �SEQ chapitre \c�3�-�SEQ exemple�50�: Binary Integer Type Physical Description (2)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�50�	Binary Integer Type Physical Description (2)"�� XE "Physical description" �

In this example, elements 1 and 2 of the LOCATION component are assigned to values (8,15) and (0,7). The whole binary representation indicates therefore that the most significant bit is the 9th bit encountered (bit 8). Then, a less significant bit is the 10th bit encountered (bit 9), and so on till the 16th bit, and then from bit 0 through bit 7, bit 7 being the least significant bit of the integer.

NOTES

 1	The ranges can be ordered backwards as well, (15,8) and (7,0), if this is the way that the bits are numbered by the machine architecture, i.e., if the first transmitted bit of an octet is the LSB, and not the MSB (as it is supposed to be).

2	The name of the constant� XE "Constant" � used to identify the binary representation (Binary_Representation) could be any identifier� XE "Identifier" � (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in a package� XE "Package" �.

c)	Real type� XE "Real type" �s

All real types, when binary encoded, must have a binary representation. The binary representation of a real type on the medium specifies the sign bit number, the sign convention, the exponent base, the bias used, the location of the exponent and the location of the mantissa.

A convention or standard gives the way to use the bit pattern to compute the associated numeric value. The binary representation of a real type also specifies therefore the convention used for its generation.

NOTE	�SYMBOL 45 \f "Symbol"�	The convention only concerns real representation on the medium, so different format representations can be expressed in the same Data Description Record even though they could not have existed on the same machine at the same time. A block of data processed on a given machine could have been inserted in another block of data processed in another machine.

Let’s take the example of a 32-bit real generated by a PC (IEEE convention - see reference �REF Ref_IEEE�[8]�) which has the following bit pattern on a medium:

0�7�8 �15�16�23�24�31��octet 0�octet 1�octet 2�octet 3��< Mantissa >�< Mantissa >��SYMBOL 175 \f "Symbol"� < Mantissa >��SYMBOL 175 \f "Symbol"� <Exponent >��	Exponent	Sign

The most significant bit of the exponent is the 26th bit encountered (bit 25). Then from bit 26 through bit 31 the bits encountered are less significant, and bit 16 is the least significant bit of the exponent.

In the same way, the most significant bit of the mantissa is the 18th bit encountered (bit 17). Then from bit 18 through bit 23, and from bit 8 through bit 15, and from bit 0 through bit 7, the bits encountered are less significant, bit 7 being the least significant bit of the mantissa.

The bit ordering of the exponent (from MSB to LSB) can also be expressed in a simple manner using ranges: (25 , 31) and (16 , 16). In the same way, the bit ordering of the mantissa (from MSB to LSB) can be expressed using ranges: (17,23), (8,15), (0,7).

How will a data interpreter use the binary representation of this real to retrieve the value?

To compute an element coded with the 32 bit real type, an interpreter uses the following algorithm:

�SYMBOL 45 \f "Symbol"�	The exponent is computed by multiplying each bit by its weight (the weight decreases from 27 for the MSB, to 20 for the LSB) and adding the result.

�SYMBOL 45 \f "Symbol"�	The mantissa is computed by dividing each bit by an increasing weight (the weight increases from 21 for the MSB of the mantissa to 223 for the LSB) and adding the result.

�SYMBOL 45 \f "Symbol"�	The value is computed according to the formula: (-1)S * 1.M * 2(E - 127), where S is the value of the sign bit, M is the calculated mantissa and E is the calculated exponent.

The following is a description of a real binary representation using the EAST syntax:

type REAL_PHYSICAL_DESCRIPTION(�	NUMBER_OF_SUBFIELDS_IN_EXPONENT : SUBFIELD_NUMBER := 1;�	NUMBER_OF_SUBFIELDS_IN_MANTISSA : SUBFIELD_NUMBER := 1)�is record�	CONVENTION_USED : LIST_OF_RECOGNIZED_CONVENTIONS;�	SIGN_BIT_NUMBER : NATURAL_NUMBER ;�	COMPLEMENT : SIGN_CONVENTION;�	EXPONENT_BASE : NATURAL_NUMBER ;�	BIAS : NATURAL_NUMBER ;�	LOCATION_OF_EXPONENT : LOCATION_OF_FIELD�			(1 .. NUMBER_OF_SUBFIELDS_IN_EXPONENT);�	LOCATION_OF_MANTISSA : LOCATION_OF_FIELD�			(1 .. NUMBER_OF_SUBFIELDS_IN_MANTISSA);�end record;

Template �SEQ chapitre \c�3�-�SEQ template�6� of the Physical Description� XE "Physical description" �

LIST_OF_RECOGNIZED_CONVENTIONS is defined as a list of ADIDs representing the permitted conventions. Reference �REF Ref_Conventions�[9]� provides the names of the recognized conventions and associated ADIDs, and for each of them, the algorithm to be used, to compute the original value, according to the information stored in the real binary representation. As an example, this type could be defined as follows:

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001);

Example �SEQ chapitre \c�3�-�SEQ exemple�51�: List of Conventions�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�51�	List of Conventions"�

NOTE	�SYMBOL 45 \f "Symbol"�	This type shall contain at least the ADIDs, used in the current Data Description. It is not mandatory to find in this definition the exhaustive list of the registered conventions, i.e., the exhaustive list of relevant ADIDs.

SIGN_CONVENTION is the enumeration type previously defined for the INTEGER_PHYSICAL_DESCRIPTION, and applied to the mantissa. The BIAS is to be subtracted from the exponent, and the EXPONENT_BASE is raised to the power of the biased exponent.

Each time the bits of the exponent or of the mantissa are not contiguously located on the medium from the MSB to the LSB (see the previous example), several subfields are necessary to locate these bits.

The associated representation of the previous real example is:

Binary_Representation : constant� XE "Constant" � REAL_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 2,�	NUMBER_OF_SUBFIELDS_IN_MANTISSA => 3,�	CONVENTION_USED => FCSTC000, -- IEEE754�	SIGN_BIT_NUMBER => 24,�	COMPLEMENT => SIGN_AND_MAGNITUDE, �	EXPONENT_BASE => 2, �	BIAS => 127, �	LOCATION_OF_EXPONENT => (1 => (25,31) , -- 1st subfield �						2 => (16,16)), -- 2nd subfield�	LOCATION_OF_MANTISSA => (1 => (17,23) , -- 1st subfield�						2 => (8,15) , -- 2nd subfield�						3 => (0,7))); -- 3rd subfield

Example �SEQ chapitre \c�3�-�SEQ exemple�52�: Binary Real Type� XE "Real type" � Physical Description�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�52�	Binary Real Type Physical Description"�� XE "Physical description" �

In this example, the LOCATION_OF_EXPONENT component, elements 1 and 2 are assigned to values (25,31) and (16,16). This expresses the range of the bit numbering in the exponent subfield. In the same way, the LOCATION_OF_MANTISSA component, elements 1, 2 and 3 are assigned to values (17,23), (8,15) and (0,7). This expresses the range of the bit numbering in the mantissa subfield.

NOTE	�SYMBOL 45 \f "Symbol"�	The name of the constant� XE "Constant" � used to identify the binary representation (Binary_Representation) could be any identifier� XE "Identifier" � (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in a package.

�	ASCII REP� XE "ASCII Representation" �RESENTATION OF SCALAR TYPES

In order to increase the portability of data, some users may wish to store types as ASCII encoded types and not as binary types (enumeration types, integer type� XE "Integer type" �s or real types). An ASCII Encoded type is a character string type with a specific format, that depends on the nature of the type (enumeration, integer or real).

There is no distinction made in the logical part of an EAST description between binary and ASCII encoded types. The actual representation of the types is provided in the physical part of the description. By default, a type is a binary encoded type. An ASCII rep� XE "ASCII Representation" �resentation must be associated with the type name, if the type is ASCII encoded.

a)	ASCII Encoded Enumeration

An ASCII Encoded Enumeration is a character string representing an enumeration value. The ASCII rep� XE "ASCII Representation" �resentation of an enumeration type provides all the character strings associated with all the enumeration literals of the type.

The ASCII rep� XE "ASCII Representation" �resentation of an enumeration uses the following types:

type STRING_LIST is array(NATURAL_NUMBER range <>, NATURAL_NUMBER range <>) of �	CHARACTER;

type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (�	NUMBER_OF_OCCURRENCES : NATURAL_NUMBER := 0;�	NUMBER_OF_CHARACTERS : NATURAL_NUMBER := 0) is record�	REPRESENTATION : STRING_LIST (1 .. NUMBER_OF_OCCURRENCES, �							1 .. NUMBER_OF_CHARACTERS);

end record;

Template �SEQ chapitre \c�3�-�SEQ template�7� of the Physical Description� XE "Physical description" �

For example, an enumeration type which has two permitted values, “TM” and “TC”, indicating a Telemetry Packet or a Telecommand Packet, can be described in the logical part as follows:

type PACKET_TYPE is (TELEMETRY, TELECOMMAND);�for PACKET_TYPE'size use 16; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�53�: ASCII Enumeration Type Logical Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�53�	ASCII Enumeration Type Logical Declaration"�

and in the physical part as follows:

ASCII_Rep : constant� XE "Constant" � ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 2,�	REPRESENTATION => (“TM” , “TC”));

Example �SEQ chapitre \c�3�-�SEQ exemple�54�: ASCII Enumeration Type� XE "Enumeration type" � Physical Description�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�54�	ASCII Enumeration Type Physical Description"�� XE "Physical description" �

Rule �SEQ regle�23�	The number of characters used to encode the enumeration type must be the same for every enumeration literal of the type. See section 3.3.3.2. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�24�	All characters (i.e., the 256 characters of the “Latin Alphabet No. 1”—see reference �REF Ref_Latin1_Spec�[6]�) are allowed and significant, including the space character. See section 3.3.3.2. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

Rule �SEQ regle�25�	The physical representations of the enumeration literals are provided in the order of their declaration in the logical part. See section 3.3.3.2. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

NOTE	�SYMBOL 45 \f "Symbol"�	The name of the constant� XE "Constant" � used to identify the ASCII rep� XE "ASCII Representation" �resentation (ASCII_Rep) could be any identifier� XE "Identifier" � (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in a package� XE "Package" �.

The relation between the logical definition of the enumeration type “PACKET_TYPE” and its physical description “ASCII_Rep” is made in creating a connection between the two names (see � REF _Ref349617631 \n �3.4.2�).

b)	ASCII Encoded Decimal Integer

An ASCII Encoded Decimal Integer is a character string representing an integer value. The format of the character string corresponding to an ASCII encoded decimal integer is described in Figure � REF F_ASCII_Integer_Format * MERGEFORMAT �3-3�:

�

Figure �SEQ chapitre \c�3�-�SEQ figure�3�: ASCII Encoded Decimal Integer Format�TC \f G "�SEQ chapitre \c�3�-� SEQ figure\c�3�	ASCII Encoded Decimal Integer Format"�

A digit is one of the following characters: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’.

The ASCII rep� XE "ASCII Representation" �resentation of an integer type� XE "Integer type" � specifies the number of characters used for the integer values. The ASCII representation of an integer uses the following type:

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record�	NUMBER_OF_CHARACTERS : NATURAL_NUMBER ;�end record;

Template �SEQ chapitre \c�3�-�SEQ template�8� of the Physical Description� XE "Physical description" �

For example, a 5-character ASCII decimal integer type� XE "Integer type" � can be described in the logical part as follows:

type COUNTER is range -1 .. 16383;�for COUNTER'size use 40; -- bits, i.e., 5 characters

Example �SEQ chapitre \c�3�-�SEQ exemple�55�: ASCII Integer Type Logical Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�55�	ASCII Integer Type Logical Declaration"�

and in the physical part as follows:

ASCII_Rep : constant� XE "Constant" � ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_CHARACTERS => 5);

Example �SEQ chapitre \c�3�-�SEQ exemple�56�: ASCII Integer Type Physical Description�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�56�	ASCII Integer Type Physical Description"�� XE "Physical description" �

Possible occurrences of this integer type� XE "Integer type" � are:

	–	“ -1”�–	“ 205”�–	“ 8451”�–	“11001”

NOTE	�SYMBOL 45 \f "Symbol"�	The name of the constant� XE "Constant" � used to identify the ASCII rep� XE "ASCII Representation" �resentation (ASCII_Rep) could be any identifier (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in a package.

�c)	ASCII Encoded Decimal Real

An ASCII Encoded Decimal Real is a string representing a real value. The format of the character string corresponding to an ASCII encoded decimal real is described in Figure � REF F_ASCII_Real_Format * MERGEFORMAT �3-4�:

�

Figure �SEQ chapitre \c�3�-�SEQ figure�4�: ASCII Encoded Decimal Real Format�TC \f G "�SEQ chapitre \c�3�-�SEQ figure \c�4�	ASCII Encoded Decimal Real Format"�

A digit is one of the following characters: ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’.

NOTES

1	Only the normalized ASCII encoded numbers can be described using EAST. There is no convention for the ASCII rep� XE "ASCII Representation" �resentation of infinite values (“+INF”, “-INF” or “+ �SYMBOL 165 \f "Symbol"�”, “- �SYMBOL 165 \f "Symbol"�”) and no representation for “NaN” (Not a Number).

2	In the FORTRAN 90 Numeric Editing section (see reference �REF Ref_F90�[10]�), it is specified that the decimal point is optional in the F notation. In the same way, the ‘E’ or ‘D’ may be omitted in the E and D notation. These features have not been retained because the ASCII real value must be “readable”, i.e., understandable without any other information but the number of characters.

The ASCII rep� XE "ASCII Representation" �resentation of a real type specifies the number of characters used for the real values. The ASCII representation of a real uses the same type as the one used for the representation of integer:

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record�	NUMBER_OF_CHARACTERS : NATURAL_NUMBER ;�end record;

Template �SEQ chapitre \c�3�-�SEQ template�9� of the Physical Description� XE "Physical description" �

For example, an 11-character ASCII decimal real type can be described in the logical part as follows:

type KILOMETERS is digits 5;�for KILOMETERS'size use 88; -- bits

Example �SEQ chapitre \c�3�-�SEQ exemple�57�: ASCII Real Type� XE "Real type" � Logical Declaration�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�57�	ASCII Real Type Logical Declaration"�

and in the physical part as follows:

ASCII_Rep : constant� XE "Constant" � ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_CHARACTERS => 11);

Example �SEQ chapitre \c�3�-�SEQ exemple�58�: ASCII Real Type� XE "Real type" � Physical Description�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�58�	ASCII Real Type Physical Description"�� XE "Physical description" �

Possible occurrences of this real type are:

	–	“ 1.2674E+03”�–	“ -128.56”�–	“ -1.3689E-8”

NOTE	�SYMBOL 45 \f "Symbol"�	The name of the constant� XE "Constant" � used to identify the ASCII rep� XE "ASCII Representation" �resentation (ASCII_Rep) could be any identifier (except a reserved keyword). The only restriction is that a constant identifier cannot be defined twice in a package.

�	FREQUENTLY ASKED QUESTIONS

Question �SEQ Question \r 1�1�	Is the octet storage method significant for the bit storage?

Answer �SEQ Reponse \r 1�1�	The octet storage method, defined by the bit ordering, is useful for the interpretation of multi-octet elements as well as for the interpretation of “small” elements, i.e., elements with a length less than 8 bits.

Question �SEQ Question�2�	Why is no binary representation provided for a binary enumeration type?

Answer �SEQ Reponse�2�	An enumeration value is an integer value. The bit ordering is sufficient to deduce the binary representation of the enumeration because it specifies indirectly the location of the most significant bit and the location of the least significant bit: if the octet storage method is “high order first”, then the first encountered bit is the most significant bit of the enumeration; if it is the “low order first”, then the octets must be first inverted, to have the most significant bit of the enumeration in the first encountered bit. The sign convention, if needed, is the two’s complementation.

Question �SEQ Question�3�	How is a real that is generated using a non-recognized convention described?

Answer �SEQ Reponse�3�	The list of recognized conventions is not an exhaustive list (see reference �REF Ref_Conventions�[9]�). This list shall be extended, if necessary. In the case of a “new” real convention, the binary representation must be provided to the relevant Member Agency Control Authority Office (MACAO) for registration and definition of a new ADID; the “CONVENTION_USED” field must be filled with the “new” convention ADID. The document �REF Ref_Conventions�[9]� should be upgraded within a relatively short delay.

�	ORGANIZATION OF EAST DATA DESCRIPTION RECORDS

As seen in the previous subsections (� REF _Ref349617707 \n �3.2� and � REF _Ref349617727 \n �3.3�), EAST contributes to a complete data description. EAST organizes the description in two units, called packages, the first one being the logical data description package� XE "Package" � and the second one the physical data description package.

Subsection � REF _Ref349618148 \n �3.4.1� summarizes the list of information items provided in the logical part and gives an example of an EAST logical package� XE "Package" �.

Subsection � REF _Ref349618201 \n �3.4.2� summarizes the list of information items provided in the physical part and gives an example of an EAST physical package� XE "Package" � (associated with the logical one presented in � REF _Ref349618148 \n �3.4.1�).

	LOGICAL DATA DESCRIPTION PACKAGE

The first package� XE "Package" � contains the logical description of all data types used to declare an occurrence of the exchanged data. This logical description is written using the EAST syntax, as described in � REF _Ref349618231 \n �3.2� and specified in reference �REF Ref_Spec_EAST�[1]�.

The logical description must include the following EAST statements:

�SYMBOL 45 \f "Symbol"�	A mandatory statement beginning with the keyword “package� XE "Package" �” followed by an EAST identifier� XE "Identifier" �, which is supposed to be the name of the logical data description part, and followed by the keyword “is”. This statement is the first one of the logical package.

�SYMBOL 45 \f "Symbol"�	Declaration of constants used in the rest of the description.

�SYMBOL 45 \f "Symbol"�	User type declarations and their associated representation clauses, which describe the syntax of data items and the relationship of these data items. Atomic data types (enumeration types, integer type� XE "Integer type" �s, real types and character string subtypes) must be declared before any aggregation data types (array types and record types) that make use of them.

�SYMBOL 45 \f "Symbol"�	Declaration of variables (and constants), which represent one actual data occurrence. The order of the declarations must correspond to the order of the contiguous data items in any block instance described by this logical description. The exchanged data block contains n (n �SYMBOL 179 \f "Symbol"� 1) contiguous occurrences of the described data.

�SYMBOL 45 \f "Symbol"�	A mandatory statement beginning with the keyword “end” followed by the name of the logical data description part (the same one as the one after the keyword “package� XE "Package" �” at the beginning of the description), and followed by the character “;”. This statement is the last one of the logical package.

The order of the declarations of the logical package� XE "Package" � is not free. An EAST definition must appear before it is used(F�SEQ note�10�).

CAUTION	�SYMBOL 45 \f "Symbol"�	A type declaration does not correspond to any data occurrence. Only the declared variables correspond to the data that are to be exchanged.

Some readers may find it laborious to declare types and then variables. Why is it not sufficient to provide only type declarations for a data description?

The following example illustrates the different meaning intrinsic to a type declaration and to a declaration of a variable� XE "Variable" �.

package� XE "Package" � logical_CNES_description_01 is

-- type declarations�type BULLETIN_KIND is (CARTESIAN , KEPLERIAN);�for BULLETIN_KIND'size use 72; -- bits

type YEAR is range 1900 .. 2100;�for YEAR'size use 32; -- bits

type MONTH is range 1 .. 12;�for MONTH'size use 32; -- bits

type DAY_OF_MONTH is range 1 .. 31;�for DAY_OF_MONTH'size use 32; -- bits

type HOUR is range 0 .. 23;�for HOUR'size use 32; -- bits

type MINUTE is range 0 .. 59;�for MINUTE'size use 32;-- bits

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple�59�: Complete Logical Description� XE "Logical description" � (1 of 4)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�59�	Complete Logical Description"�

�

type SECOND is digits 5 range 0.0000 .. 59.999;�for SECOND'size use 32; -- bits

type KILOMETERS is digits 12 range 0.00000000000 .. 999999.999999;�for KILOMETERS'size use 64; -- bits

type KM_SEC is digits 12 range 0.00000000000 .. 999999.999999;�for KM_SEC'size use 64; -- bits

type RATIO is digits 12 range 0.00000000000 .. 1.00000000000;�for RATIO'size use 64; -- bits

type ANGULAR_DEGREE is digits 12 range 0.0 .. 360.0;�for ANGULAR_DEGREE'size use 64; -- bits

type EPOCH_TIME is record�	Experiment_Year	: YEAR;�	Experiment_Month	: MONTH;�	Experiment_Day	: DAY_OF_MONTH;�	Experiment_Hour	: HOUR;�	Experiment_Minute	: MINUTE;�	Experiment_Second	: SECOND;�end record;�for EPOCH_TIME use�record�	Experiment_Year 		at 0 * WORD_32_BITS� XE "WORD_32_BITS" � range 0 .. 31;�	Experiment_Month		at 1 * WORD_32_BITS range 0 .. 31;�	Experiment_Day		at 2 * WORD_32_BITS range 0 .. 31;�	Experiment_Hour		at 3 * WORD_32_BITS range 0 .. 31;�	Experiment_Minute		at 4 * WORD_32_BITS range 0 .. 31;�	Experiment_Second		at 5 * WORD_32_BITS range 0 .. 31;�end record;�for EPOCH_TIME'size use 192; -- bits

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple \c�59�: Complete Logical Description� XE "Logical description" � (2 of 4)

type BULLETIN (Kind : BULLETIN_KIND := CARTESIAN) is record�	case Kind is �		when CARTESIAN =>�			State_Position_Element_X_Axis : KILOMETERS;�			State_Position_Element_Y_Axis : KILOMETERS;�			State_Position_Element_Z_Axis : KILOMETERS;�			State_Velocity_Element_X_Axis : KM_SEC;�			State_Velocity_Element_Y_Axis : KM_SEC;�			State_Velocity_Element_Z_Axis : KM_SEC;

		when KEPLERIAN =>�			Semi_Major_Axis : KILOMETERS;�			Eccentricity : RATIO;�			Inclination : ANGULAR_DEGREE;�			Right_Ascencion_Ascending_Node : ANGULAR_DEGREE;�			Argument_of_Perigee : ANGULAR_DEGREE;�			True_Anomalie : ANGULAR_DEGREE;�	end case;�end record;�for BULLETIN use�record�	Kind at 0 * WORD_32_BITS� XE "WORD_32_BITS" � range 0 .. 71;�	State_Position_Element_X_Axis at 2 * WORD_32_BITS range 8 .. 71�;�	State_Position_Element_Y_Axis at 4 * WORD_32_BITS range 8 .. 71;�	State_Position_Element_Z_Axis at 6 * WORD_32_BITS range 8 .. 71;�	State_Velocity_Element_X_Axis at 8 * WORD_32_BITS range 8 .. 71;�	State_Velocity_Element_Y_Axis at 10 * WORD_32_BITS range 8 .. 71;�	State_Velocity_Element_Z_Axis at 12 * WORD_32_BITS range 8 .. 71;�	Semi_Major_Axis at 2 * WORD_32_BITS range 8 .. 71;�	Eccentricity at 4 * WORD_32_BITS range 8 .. 71;�	Inclination at 6 * WORD_32_BITS range 8 .. 71;�	Right_Ascencion_Ascending_Node at 8 * WORD_32_BITS range 8 .. 71;�	Argument_of_Perigee at 10 * WORD_32_BITS range 8 .. 71;�	True_Anomaly at 12 * WORD_32_BITS range 8 .. 71;�end record;�for BULLETIN'size use 392; -- bits

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple \c�59�: Complete Logical Description� XE "Logical description" � (3 of 4)

�-- declaration of variables �TIME : EPOCH_TIME;�BULLETIN_AT_THAT_TIME : BULLETIN;�INTERVAL : SECOND;�BULLETIN_AFTER_INTERVAL : BULLETIN;

end logical_CNES_description_01;

Example �SEQ chapitre \c�3�-�SEQ exemple \c�59�: Complete Logical Description� XE "Logical description" � (4 of 4)

In this example, it may be noted that:

�SYMBOL 45 \f "Symbol"�	many types are declared, only three of those are used to declare the variables corresponding to the actual exchanged data;

�SYMBOL 45 \f "Symbol"�	one of these types is an atomic data type (SECOND) used:

•	for the definition of a complex data type (EPOCHTIME);

•	for the declaration of a data item (Interval);

�SYMBOL 45 \f "Symbol"�	the exchanged data set contains two data of the same type (BULLETIN).

So there is no one-to-one relationship between type declarations and data occurrences. Only variables can describe what kind of data is actually exchanged or stored. In this case, the described data set is a concatenation of an Epochtime, a Bulletin, an Interval and another Bulletin.

�	PHYSICAL DATA DESCRIPTION PACKAGE

The second package� XE "Package" � contains the physical description as specified in � REF _Ref349618320 \n �3.3� It includes the following EAST statements in the following order:

�SYMBOL 45 \f "Symbol"�	a mandatory statement beginning with the keyword “package� XE "Package" �” followed by an EAST identifier� XE "Identifier" �, which is supposed to be the name of the physical data description part, and by the keyword “is”;

�SYMBOL 45 \f "Symbol"�	two optional statements giving the array storage method, as specified in � REF _Ref349618359 \n �3.3.2�;

�SYMBOL 45 \f "Symbol"�	two optional statements giving the octet storage method, as specified in � REF _Ref349618382 \n �3.3.3�;

�SYMBOL 45 \f "Symbol"�	optional statements giving the actual representations of scalar types, that is type declarations as specified in � REF _Ref349618406 \n �3.3.4� and � REF _Ref349618420 \n �3.3.5�, and constant� XE "Constant" � declarations providing the actual representations;

�SYMBOL 45 \f "Symbol"�	a set of optional statements giving the association of basic (i.e. scalar) type names and their actual representations (this point is further developed);

�SYMBOL 45 \f "Symbol"�	a mandatory statement beginning with the keyword “end” followed by the name of the physical data description part, and followed by the character “;”.

Representations of scalar types are provided in the physical description part. However, the relationship between these representations and the type names which are given in the logical description part still have to be specified. This is achieved with the following declarations.

An enumeration type declaration must be present to give all the basic type names defined in the logical description part, i.e., all integer type� XE "Integer type" � names, all real type names and some enumeration type names (the ASCII one). Every name is prefixed by “USER_TYPE_” in the following list:

type BASIC_TYPE_NAMES is (USER_TYPE_xxx , USER_TYPE_yyy , �		USER_TYPE_zzz);

Template �SEQ chapitre \c�3�-�SEQ template�10� of the Physical Description� XE "Physical description" �

where xxx, yyy, zzz are the names of the basic types.

�The different representations used are declared using the following constant� XE "Constant" � declarations:

Binary_Representation_01 : constant� XE "Constant" � INTEGER_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_SUBFIELDS => n,�	COMPLEMENT =>m , �	LOCATION => (1 => (r,s) ,�				...�				n => (t,u)));

Binary_Representation_02 : constant� XE "Constant" � REAL_PHYSICAL_DESCRIPTION := �	(NUMBER_OF_SUBFIELDS_IN_EXPONENT => n1,�	NUMBER_OF_SUBFIELDS_IN_MANTISSA => n2,�	CONVENTION_USED => FCSTC000, -- IEEE754�	SIGN_BIT_NUMBER => z,�	COMPLEMENT => m, �	EXPONENT_BASE => d, �	BIAS => i, �	LOCATION_OF_EXPONENT =>	(1 => (r,s) ,�						...�						n1 => (t,u)),�	LOCATION_OF_MANTISSA => 	(1 => (v,w) ,�						...�						n2 => (x,y)));

ASCII_Representation_01 : constant� XE "Constant" � ASCII_NUMERIC_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_CHARACTERS => d);

ASCII_Representation_02 : constant� XE "Constant" � �	ASCII_ENUMERATION_PHYSICAL_DESCRIPTION := 	(NUMBER_OF_CHARACTERS => j,

	NUMBER_OF_OCCURRENCES => k,

	REPRESENTATION => (“...”, ...));

Example �SEQ chapitre \c�3�-�SEQ exemple�60�: Template for ASCII and Binary Physical Description� XE "Physical description" �s�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�60�	Template for ASCII and Binary Physical Descriptions"�

where n, n1, n2 are the numbers of subfields; r, s, t, u, v, w, x, y, z are bit numbers; m indicates the sign convention; d, i, j and k are positive numbers.

Finally the relation between the scalar type names and their representations is specified as follows:

type RELATION(choice : BASIC_TYPE_NAMES) is record�	case choice is�		when USER_TYPE_xxx =>�			PHYS_xxx : INTEGER_PHYSICAL_DESCRIPTION :=�				Binary_Representation_01;�		when USER_TYPE_yyy =>�			PHYS_yyy : REAL_PHYSICAL_DESCRIPTION :=�				Binary_Representation_02;�		when USER_TYPE_zzz =>�			PHYS_zzz : ASCII_NUMERIC_PHYSICAL_DESCRIPTION := �				ASCII_Representation_01;�	end case;�end record;

Example �SEQ chapitre \c�3�-�SEQ exemple�61�: Template for Relation Type Definition�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�61�	Template for Relation Type Definition"�

The integer physical representation Binary_Representation_01 is associated with the logical type named “xxx”, which has been previously defined in the associated logical package� XE "Package" � as seen in � REF _Ref349618503 \n �3.2�. In the same way, the real physical representation Binary_Representation_02 is associated with the logical type named “yyy”, and the ASCII physical representation ASCII_Representation_01 is associated with the logical type named “zzz”.

NOTES

1	The syntax of the type RELATION is not free. In particular the number of components and their names (PHYS_...) are imposed by the number of enumeration literals of the type BASIC_TYPE_NAMES and the names of these literals.

2	The names of the physical representation are free. The names Binary_Representation_xx and ASCII_Representation_xx are just examples. The only applicable rule is that all the physical representation names must be different.

Rules about the content of the physical data description package� XE "Package" �:

Rule �SEQ regle�26�	The array storage is optional (ARRAY_STORAGE_METHOD type and ARRAY_STORAGE constant� XE "Constant" �) if there is no multi-dimensional array in the logical part, or if the method is FIRST_INDEX_FIRST (default value).

Rule �SEQ regle�27�	The octet storage is optional (BIT_ORDER type and OCTET_STORAGE constant� XE "Constant" �) if the method is HIGH_ORDER_FIRST (default value).

Rule �SEQ regle�28�	The type REAL_PHYSICAL_DESCRIPTION is optional if there is no binary representation for real type to provide, i.e. if there is no binary real type in the logical part.

Rule �SEQ regle�29�	The type INTEGER_PHYSICAL_DESCRIPTION is optional if there is no binary representation for integer type� XE "Integer type" � to provide, i.e. if there is no binary integer type in the logical part or if there are all considered as machine-independent integers (unsigned integers or two's complement signed integers).

Rule �SEQ regle�30�	The type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION is optional if there is no ASCII rep� XE "ASCII Representation" �resentation for enumeration type to provide, i.e. if there is no ASCII enumeration type in the logical part.

Rule �SEQ regle�31�	The type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is optional if there is no ASCII rep� XE "ASCII Representation" �resentation for integer or real type to provide, i.e. if there is no ASCII integer type� XE "Integer type" � and no ASCII real type in the logical part.

Rule �SEQ regle�32�	The types BASIC_TYPE_NAMES and RELATION are optional if there is no representation to provide.

For all these rules, see also section 3.3.5. of reference � REF Ref_Spec_EAST * MERGEFORMAT �[1]�.

The following example provides a physical data description package� XE "Package" �, which could be associated with the logical data description package presented in the previous example. This logical package defined some basic types:

�SYMBOL 45 \f "Symbol"�	one enumeration type (BULLETIN_KIND);

�SYMBOL 45 \f "Symbol"�	five 16 bit integer type� XE "Integer type" �s (YEAR, MONTH, DAY_OF_MONTH, HOUR, MINUTE);

�SYMBOL 45 \f "Symbol"�	one 32 bit real type (SECOND);

�SYMBOL 45 \f "Symbol"�	four 64 bit real types (KILOMETERS, KM_SEC, RATIO, ANGULAR_DEGREE).

�These eleven basic types are described in the physical package� XE "Package" �. They are named in the enumeration type BASIC_TYPE_NAMES, and their binary or ASCII rep� XE "ASCII Representation" �resentations are provided (five different representations). The following physical description assumes that the data have been generated on a SUN host machine (with the IEEE convention for the real generation).

In order to distinguish the templates from the user defined parts, the adopted convention in the example is that bold text represents the templates, i.e., the constant� XE "Constant" � information.

package� XE "Package" � physical_CNES_description_01 is��type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST ,�							LAST_INDEX_FIRST) ;�ARRAY_STORAGE : constant� XE "Constant" � ARRAY_STORAGE_METHOD := �							FIRST_INDEX_FIRST;

type BIT_ORDER is (HIGH_ORDER_FIRST , LOW_ORDER_FIRST) ;�OCTET_STORAGE : constant� XE "Constant" � BIT_ORDER := HIGH_ORDER_FIRST;

type LOCATION_OF_SUBFIELD is record	�	BEGINNING_AT_BIT_NUMBER : NATURAL_NUMBER ;�	ENDING_AT_BIT_NUMBER : NATURAL_NUMBER ;�end record;

MAXIMUM_NUMBER_OF_SUBFIELDS : constant� XE "Constant" � := 255;

type SUBFIELD_NUMBER is range 1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>) �	of LOCATION_OF_SUBFIELD;

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,�	ONES_COMPLEMENT, TWOS_COMPLEMENT);

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001);

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple�62�: Complete Physical Description� XE "Physical description" � (1 of 4)�TC \f T "�SEQ chapitre \c�3�-�SEQ exemple \c�62�	Complete Physical Description"�

�type INTEGER_PHYSICAL_DESCRIPTION �	(NUMBER_OF_SUBFIELDS : SUBFIELD_NUMBER := 1)�is record�	COMPLEMENT : SIGN_CONVENTION;�	LOCATION : LOCATION_OF_FIELD(1 .. NUMBER_OF_SUBFIELDS);�end record;

type STRING_LIST is array(NATURAL_NUMBER range <>, NATURAL_NUMBER range <>) of CHARACTER;

type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION (�	NUMBER_OF_OCCURRENCES : NATURAL_NUMBER := 0;�	NUMBER_OF_CHARACTERS : NATURAL_NUMBER := 0) is record�	REPRESENTATION : STRING_LIST (1 .. NUMBER_OF_OCCURRENCES, �						1 .. NUMBER_OF_CHARACTERS);�end record;

type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is record�	NUMBER_OF_CHARACTERS : NATURAL_NUMBER ;�end record;

type REAL_PHYSICAL_DESCRIPTION(�	NUMBER_OF_SUBFIELDS_IN_EXPONENT : SUBFIELD_NUMBER := 1;�	NUMBER_OF_SUBFIELDS_IN_MANTISSA : SUBFIELD_NUMBER := 1)�is record�	CONVENTION_USED : LIST_OF_RECOGNIZED_CONVENTIONS;�	SIGN_BIT_NUMBER : NATURAL_NUMBER ;�	COMPLEMENT : SIGN_CONVENTION;�	EXPONENT_BASE : NATURAL_NUMBER ;�	BIAS : NATURAL_NUMBER ;�	LOCATION_OF_EXPONENT : LOCATION_OF_FIELD�		(1 .. NUMBER_OF_SUBFIELDS_IN_EXPONENT);�	LOCATION_OF_MANTISSA : LOCATION_OF_FIELD�		(1 .. NUMBER_OF_SUBFIELDS_IN_MANTISSA);�end record;

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple \c�62�: Complete Physical Description� XE "Physical description" � (2 of 4)

�type BASIC_TYPE_NAMES is (USER_TYPE_BULLETIN_KIND, �	USER_TYPE_YEAR, USER_TYPE_MONTH, USER_TYPE_DAY_OF_MONTH, �	USER_TYPE_HOUR, USER_TYPE_MINUTE, USER_TYPE_SECOND, �	USER_TYPE_KILOMETERS, USER_TYPE_KM_SEC, USER_TYPE_RATIO, �	USER_TYPE_DEGREE);

�-- actual binary representations�Binary_Representation_01 : constant� XE "Constant" � INTEGER_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_SUBFIELDS => 1, COMPLEMENT => TWOS_COMPLEMENT,�	LOCATION => (1 => (0,31)));

�ASCII_Representation_01 : constant� XE "Constant" � ASCII_ENUMERATION_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_OCCURRENCES => 2, NUMBER_OF_CHARACTERS => 9,�	REPRESENTATION => (“CARTESIAN” , “KEPLERIAN”));

Binary_Representation_02 : constant� XE "Constant" � REAL_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 1,�	NUMBER_OF_SUBFIELDS_IN_MANTISSA => 1,�	CONVENTION_USED => FCSTC000, -- IEEE754�	SIGN_BIT_NUMBER => 0,�	COMPLEMENT => SIGN_AND_MAGNITUDE, �	EXPONENT_BASE => 2, �	BIAS => 1023, �	LOCATION_OF_EXPONENT =>	(1 => (1,11)) ,�	LOCATION_OF_MANTISSA => 	(1 => (12,63)));

Binary_Representation_03 : constant� XE "Constant" � REAL_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 1, 	NUMBER_OF_SUBFIELDS_IN_MANTISSA => 1, �	CONVENTION_USED => FCSTC000, -- IEEE754,�	SIGN_BIT_NUMBER => 0,�	COMPLEMENT => SIGN_AND_MAGNITUDE, �	EXPONENT_BASE => 2, �	BIAS => 127, �	LOCATION_OF_EXPONENT =>	(1 => (1,8)) ,�	LOCATION_OF_MANTISSA => 	(1 => (9,31)));

.../...

Example �SEQ chapitre \c�3�-�SEQ exemple \c�62�: Complete Physical Description� XE "Physical description" � (3 of 4)

type RELATION(choice : BASIC_TYPE_NAMES) is record�case choice is�when USER_TYPE_BULLETIN_KIND =>� PHYS_BULLETIN_KIND : ASCII_ENUMERATION_PHYSICAL_DESCRIPTION := �	ASCII_Representation_01;�when USER_TYPE_YEAR=>� PHYS_YEAR : INTEGER_PHYSICAL_DESCRIPTION := �	Binary_Representation_01;�when USER_TYPE_MONTH=>� PHYS_MONTH : INTEGER_PHYSICAL_DESCRIPTION := �	Binary_Representation_01;�when USER_TYPE_DAY_OF_MONTH=>� PHYS_DAY_OF_MONTH : INTEGER_PHYSICAL_DESCRIPTION := �	Binary_Representation_01;�when USER_TYPE_HOUR=>� PHYS_HOUR : INTEGER_PHYSICAL_DESCRIPTION := �	Binary_Representation_01;�when USER_TYPE_MINUTE=>� PHYS_HOUR : INTEGER_PHYSICAL_DESCRIPTION := �	Binary_Representation_01;�when USER_TYPE_SECOND =>� PHYS_SECOND: REAL_PHYSICAL_DESCRIPTION := �	Binary_Representation_03; �when USER_TYPE_KILOMETERS=>� PHYS_KILOMETERS: REAL_PHYSICAL_DESCRIPTION := �	Binary_Representation_02;�when USER_TYPE_KM_SEC =>� PHYS_KM_SEC: REAL_PHYSICAL_DESCRIPTION := �	Binary_Representation_02;�when USER_TYPE_RATIO =>� PHYS_RATIO : REAL_PHYSICAL_DESCRIPTION := �	Binary_Representation_02;�when USER_TYPE_DEGREE =>� PHYS_DEGREE : REAL_PHYSICAL_DESCRIPTION := �	Binary_Representation_02;�end case;�end record;

end physical_CNES_description_01;

Example �SEQ chapitre \c�3�-�SEQ exemple \c�62�: Complete Physical Description� XE "Physical description" � (4 of 4)

��SEQ chapitre \h�	USING EAST DATA DESCRIPTION RECORD

This section provides an example to illustrate the use of an EAST Data Description Record, from an end user point of view. Subsection � REF _Ref349618583 \n �4.1� explains how to use the logical description, while � REF _Ref349618599 \n �4.2� explains how to use the physical description.

	USING LOGICAL DESCRIPTIONS

The logical part of a data description is required by a user to define the application that will consume (or make use of) the data. It contains the information relative to the nature of the received data. A user may be helped by a tool (see � REF _Ref349618617 \n �5.4� and annex � REF _Ref349615302 \n �C�) to extract some data from a data block. The user must be able to identify (or name) the data item from which he wants to get the value. For that purpose, EAST provides the dot notation.

The described data correspond to the objects (variables or constants) declared in the second section of the logical package� XE "Package" �. A name denotes either a declared object� XE "Object" � or a subcomponent of a declared object.

The following example gives a simple logical description package� XE "Package" �:

package� XE "Package" � logical_CNES_description_02 is��-- first section: declaration of types

type MEASUREMENT is range 0 .. 65000;�for MEASUREMENT'size use 16; -- bits�type SECOND is digits 8 range 0.0000000 .. 60.000000;�for SECOND'size use 64; -- bits�type DATED_MEASUREMENT is record�	TEMPERATURE : MEASUREMENT;�	DATE_OFFSET : SECOND;�end record;�for DATED_MEASUREMENT use�record�	TEMPERATURE at 0 range 0 .. 15;�	DATE_OFFSET at 0 range 16 .. 79;�end record;�for DATED_MEASUREMENT'size use 80; -- bits�type MEASUREMENT_BLOCK is array (1..10,1..10) of DATED_MEASUREMENT;�for MEASUREMENT_BLOCK'size use 8000; -- bits

-- second section: declaration of variables

SOURCE_DATA : MEASUREMENT_BLOCK;

end logical_CNES_description_02;	

Example �SEQ chapitre \c�4�-�SEQ exemple \r 1�1�: Complete Logical Description�TC \f T "�SEQ chapitre \c�4�-�SEQ exemple \c�1�	Complete Logical Description"�� XE "Logical description" �

The data object� XE "Object" � contained in the data block is “SOURCE_DATA”. The access path to the complete data set is:

		“SOURCE_DATA” -- 100 of dated_measurement

The access path to subcomponents are:

		“SOURCE_DATA(1..10, 2)” -- 10 of dated_measurement�	or	“SOURCE_DATA(3,5)” -- 1 dated_measurement�	or	“SOURCE_DATA(5, 1 .. 5).DATE_OFFSET” -- 5 of SECOND �	or	“SOURCE_DATA(1,1).TEMPERATURE” -- 1 MEASUREMENT

NOTES

1	The dot notation (“.”) is used to select one component of a record.

2	The slice notation (“(1 .. 5)”) is used to select a number of contiguous elements of an array.

3	The dot notation and slice notation can be composed to access elements of a record contained in an array, or elements of an array contained in a record.

	USING PHYSICAL DESCRIPTIONS

The physical part of a data description is required by an interpretation tool, or a specific decommutation program, to retrieve the values of the described data. The following example gives a possible physical description package� XE "Package" � associated with the previous logical description package.

�package� XE "Package" � physical_CNES_description_02 is

type ARRAY_STORAGE_METHOD is (FIRST_INDEX_FIRST , LAST_INDEX_FIRST) ;�ARRAY_STORAGE : constant� XE "Constant" � ARRAY_STORAGE_METHOD := FIRST_INDEX_FIRST;

type BIT_ORDER is (HIGH_ORDER_FIRST , LOW_ORDER_FIRST) ;�OCTET_STORAGE : constant� XE "Constant" � BIT_ORDER := HIGH_ORDER_FIRST;

type LOCATION_OF_SUBFIELD is record	�	BEGINNING_AT_BIT_NUMBER : NATURAL_NUMBER ;�	ENDING_AT_BIT_NUMBER : NATURAL_NUMBER ;�end record;

MAXIMUM_NUMBER_OF_SUBFIELDS : constant� XE "Constant" � := 255;

type SUBFIELD_NUMBER is range 1 .. MAXIMUM_NUMBER_OF_SUBFIELDS;

type LOCATION_OF_FIELD is array (SUBFIELD_NUMBER range <>) �		of LOCATION_OF_SUBFIELD;

type SIGN_CONVENTION is (UNSIGNED, SIGN_AND_MAGNITUDE,�		ONES_COMPLEMENT, TWOS_COMPLEMENT);

type LIST_OF_RECOGNIZED_CONVENTIONS is (FCSTC000, FCSTC001);

type INTEGER_PHYSICAL_DESCRIPTION �	(NUMBER_OF_SUBFIELDS : SUBFIELD_NUMBER := 1)�is record�	COMPLEMENT : SIGN_CONVENTION;�	LOCATION : LOCATION_OF_FIELD(1 .. NUMBER_OF_SUBFIELDS);�end record;

.../...

Example �SEQ chapitre \c�4�-�SEQ exemple�2�: Complete Physical Description� XE "Physical description" � (1 of 3) �TC \f T "�SEQ chapitre \c�4�-�SEQ exemple \c�2�	Complete Physical Description"�

�type REAL_PHYSICAL_DESCRIPTION(�	NUMBER_OF_SUBFIELDS_IN_EXPONENT : SUBFIELD_NUMBER := 1;�	NUMBER_OF_SUBFIELDS_IN_MANTISSA : SUBFIELD_NUMBER := 1)�is record�	CONVENTION_USED : LIST_OF_RECOGNIZED_CONVENTIONS;�	SIGN_BIT_NUMBER : NATURAL_NUMBER ;�	COMPLEMENT : SIGN_CONVENTION;�	EXPONENT_BASE : NATURAL_NUMBER ;�	BIAS : NATURAL_NUMBER ;�	LOCATION_OF_EXPONENT : LOCATION_OF_FIELD�		(1 .. NUMBER_OF_SUBFIELDS_IN_EXPONENT);�	LOCATION_OF_MANTISSA :	LOCATION_OF_FIELD�		(1 .. NUMBER_OF_SUBFIELDS_IN_MANTISSA);�end record;

type BASIC_TYPE_NAMES is (USER_TYPE_MEASUREMENT, USER_TYPE_SECOND);

-- actual binary representations�Binary_Representation_01 : constant� XE "Constant" � INTEGER_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_SUBFIELDS => 1, COMPLEMENT => UNSIGNED, �	LOCATION => (1 => (0,15)));

Binary_Representation_02 : constant� XE "Constant" � REAL_PHYSICAL_DESCRIPTION :=�	(NUMBER_OF_SUBFIELDS_IN_EXPONENT => 1,�	NUMBER_OF_SUBFIELDS_IN_MANTISSA => 1, �	CONVENTION_USED => FCSTC000, -- IEEE754�	SIGN_BIT_NUMBER => 0,�	COMPLEMENT => SIGN_AND_MAGNITUDE, �	EXPONENT_BASE => 2, �	BIAS => 1023, �	LOCATION_OF_EXPONENT =>	(1 => (1,11)) ,�	LOCATION_OF_MANTISSA => 	(1 => (12,63)));

.../...

Example �SEQ chapitre \c�4�-�SEQ exemple \c�2�: Complete Physical Description� XE "Physical description" � (2 of 3)

�type RELATION(choice : BASIC_TYPE_NAMES) is record�	case choice is�		when USER_TYPE_MEASUREMENT =>�			PHYS_MEASUREMENT : INTEGER_PHYSICAL_DESCRIPTION :=�				Binary_Representation_01;�		when USER_TYPE_SECOND =>�			PHYS_SECOND: REAL_PHYSICAL_DESCRIPTION := 							Binary_Representation_02;�	end case;�end record;

end physical_CNES_description_02;

Example �SEQ chapitre \c�4�-�SEQ exemple \c�2�: Complete Physical Description� XE "Physical description" � (3 of 3)

The value of the data item named “SOURCE_DATA(1,1).TEMPERATURE” is retrieved according to the following algorithm:

SOURCE_DATA(1,1) is the first element of the array. TEMPERATURE is located on the first 16 bits of an element of the array SOURCE_DATA(1,1). Temperature is therefore located on the first 16 bits of the data block. These 16 bits correspond to an unsigned integer, whose binary representation indicates that the most significant bit is the first encountered (bit 0) and that the least significant bit is the last bit encountered (bit 15).

The value of the data item named “SOURCE_DATA(3,5).DATE_OFFSET” is retrieved according to the following algorithm:

SOURCE_DATA(3,5) is the 43th element of the array because the array storage method specifies that the first index� XE "Index" � varies first. DATE_OFFSET is located on the last 64 bits of an element of the array (i.e., from bit 16 to bit 79). The size of an element of the array is 80 bits. The DATE_OFFSET of the 43th element is therefore located from bit (42*80 + 16) to bit (42*80 + 79), i.e., from bit 3376 to bit 3439. These 64 bits correspond to an IEEE real whose binary representation indicates that the exponent is located from bit 1 to bit 11 and that the mantissa is located from bit 12 to bit 63.

��SEQ chapitre \h�	RECOMMENDED PRACTICES AND LIMITATIONS

Since EAST is based on the Ada programming language, there are a number of restrictions and practices, which are described in � REF _Ref349618696 \n �5.1� and � REF _Ref349618715 \n �5.2�.

	RESERVED KEYWORDS

Since the EAST syntax is fully compatible with the Ada syntax, it might be possible to include an EAST description in an Ada application. In order to keep the compatibility, it is recommended that EAST reserved keywords as well as pure Ada reserved keywords not be used.

Below are listed the EAST reserved keywords which are, for some of them, Ada reserved keywords too, and for others, pure EAST reserved identifiers. The other Ada keywords are listed too.

	EAST (AND ADA) KEYWORDS

	array�	digits�	is�	package� XE "Package" ��	type��	at�������	end�	null�	range�	use��	case���	record���	constant� XE "Constant" ��	for�	of��	when����	others�	subtype� XE "Suptype" ����

	PURE EAST RESERVED IDENTIFIERS

	virtual� XE "Virtual discriminant" �_...�	word_32_bits� XE "WORD_32_BITS" ��	word_16_bits� XE "WORD_16_BITS" �����

NOTE	�SYMBOL 45 \f "Symbol"�	Identifiers of the physical part (INTEGER_PHYSICAL_DESCRIPTION, USER_TYPE_..., RELATION, etc.) are not EAST reserved identifiers, because they are allowed in the logical part of the description for the definition of types and variables.

�	PURE ADA (AND NOT EAST) KEYWORDS

	abort�	delta�	if�	pragma�	tagged��	abs�	do�	in�	private�	task��	abstract���	procedure�	terminate��	accept�	else�	limited�	protected�	then��	access�	elsif�	loop����	aliased�	entry��	raise�	until��	all�	exception�	mod�	rem���	and�	exit��	renames�	while����	new�	requeue�	with��	begin�	function�	not�	return���	body���	reverse�	xor���	generic�	or����	declare�	goto�	out�	select���	delay���	separate���

NOTE	�SYMBOL 45 \f "Symbol"�	These keywords are ADA95 keywords (see reference �REF Ref_Ada95�[7]�).

	RECOMMENDED USAGE OF THE EAST SYNTAX

Section � REF _Ref349618786 \n �3� provides information on how to define types, using the EAST syntax, in order to logically describe data. Nevertheless, some recommendations are summarized in this section to enhance the readability of the data descriptions. An EAST description might be syntactically correct but might have at the same time a very poor expressiveness.

EAST is not intended to define formal semantics, but the grouping of types in structures and the naming of types convey a large amount of semantic information to the human reader.

Type Names

Type Names should provide indications on the data that they describe. For example, a type called SIXTEEN_BIT_INTEGER_TYPE gives less semantic information than a type called ORBIT_COUNTER, or SYNCHRONIZATION_VALUE, although all these types are implemented using a 16 bit integer.

Acronyms should be avoided: for example, the enumeration literals “Telemetry” and “Telecommand” should be preferred to “TM” and “TC”, although the actual representations are the character strings: “TM” and “TC”.

Type Natures

Enumeration type� XE "Enumeration type" �s should be used in preference to integer type� XE "Integer type" �s, each time the integer values have a particular meaning. For example, a type called MONTH, which is used to define a date, can be considered as an integer with the range: 1 to 12. It can also be defined as an enumeration type that has 12 alternative values: JANUARY, FEBRUARY, ..., DECEMBER. In this case, an enumeration representation clause specifies the enumeration values from 1 to 12.

Type Structuring

The grouping of types into structures is recommended each time data types are in relationship together: a repetition of measurements should be described by an array. The elements of a date (year, month, day, etc.) should be aggregated into a structure (e.g., called DATE).

�	IDENTIFIED LIMITATIONS OF EAST TO DESCRIBE DATA

The following limitations have been identified:

a) Discrete discriminants

In EAST, the type of a discriminant� XE "Discriminant" � must be discrete. Because of this fact, only enumeration types and integer type� XE "Integer type" �s are allowed to discriminate records: the binary and the ASCII rep� XE "ASCII Representation" �resentations are allowed, so it is possible to have character strings as discriminants when using the ASCII representation of enumeration types.

Other types cannot be considered to be discriminants; e.g., a component of a record cannot depend on the value of a real, of an array, of a record, etc.

�SYMBOL 45 \f "Symbol"�	Real type� XE "Real type" �s have been banished because the floating point representation (that is an approximation of the actual value) forbids any comparison between real values.

�SYMBOL 45 \f "Symbol"�	Array type� XE "Array type" �s and record types are aggregation types; the need relative to a record or to an array as a discriminant� XE "Discriminant" � corresponds to components that depend at the same time on the value of many other components. This can be translated into multiple discriminants. Subsection � REF _Ref349618858 \n �3.2.11� explains how to use more than one discriminant to discriminate the same component in a record.

b) Static discriminants

A discriminant� XE "Discriminant" � must be a static expression, which means that it cannot result from a computation. For example, EAST does not allow the specification of a component A that exists if the value of a component B plus the value of the component C has a given value.

This problem is an algorithmic problem. It can be solved at data design time. During the data design process, it is easy to add a component within the data block that represents the result of the computation, and to make this component the discriminant� XE "Discriminant" �.

c) Multiple ranges

Multiple ranges are not provided. So it is impossible to describe, using EAST, an integer type� XE "Integer type" � whose values vary between 0 and 5 and then between 10 and 15, for example. And it is therefore impossible to specify that the index� XE "Index" � of an array varies between 0 and 5, and between 10 and 15.

Since integer type� XE "Integer type" �s are used to describe whole numbers resulting from measurements of the real world, it would be curious if the measured phenomenon were not continuous. If the integer values correspond to something else that is discontinuous, then an enumeration type is possibly appropriate to describe these values. It is easy, using enumeration clauses, to specify a gap between two consecutive enumeration literals.

d) Characters

The only character set retained in EAST is the "Latin Alphabet No. 1" character set (see reference �REF Ref_Latin1_Spec�[6]�).

e) Array Storage applicability

The array storage method is applicable to the whole description. If a data set is composed of data from different sources, all the arrays must be stored in the same way.

	USE OF TOOLS

This section contains a brief list of useful tools in an EAST context. More details about available tools are provided in Annex � REF _Ref349615302 \n �C�.

An EAST Data Description Generator is necessary to assist in designing and generating automatically an EAST compliant description of data, relieving the user from concern about the EAST syntax.

The EAST language is based on the Ada syntax. But it contains additional semantic information, so it is possible using EAST to describe most of the data that are to be exchanged. That is the reason why an Ada Compiler is not sufficient to ensure the consistency of an EAST Data Description Record. An EAST Syntax Checker might therefore be useful.

The use of EAST as a Data Description Language does not preclude the use of programming languages other than Ada for the application accessing the data. In most cases, a software interface between the application and the data is necessary, i.e., a tool that parses and analyses the Data Description Record, and sometimes a tool that converts the data to the “right” format, i.e., a readable format for the application. Such a tool is called a Data Interpreter. Ada is a privileged language (but not the only possible language) for an application accessing data described using EAST, because in some cases EAST data specifications can be included in the Ada application code (with some modifications that are the addition of specific Ada language instructions to the Ada compiler like “pragma pack” and the suppression of some representation clauses used to promote compiler independence in EAST).

��SEQ chapitre \h�EAST AND DATA DESCRIPTION LANGUAGE REQUIREMENTS

This section is a discussion on the compliance of the EAST language with the requirements that a Data Description Language shall be designed to satisfy.

These requirements and their rationales are listed in � REF _Ref349619021 \n �1.2�.

R1.	Good readability

The readability is not intrinsic to the EAST language. The recommended usage of the EAST language relative to the type naming and type structuring (see � REF _Ref349619137 \n �5.2�) enhances the readability of EAST data descriptions.

R2.	Support of basic types

The EAST language supports character, enumeration, integer and real types.

R3.	Data type definition capabilities

The EAST language supports the programming language concept, called type, that defines a model, defined once, that can be used to create many occurrences of the model.

R4.	Data type structuring capabilities

The EAST language supports array and record types. An array type is the relationship of homogeneous data items, i.e., describes a repetition of data items of the same type. A record is the relationship of heterogeneous data items, i.e., describes an ordered aggregation of data items of any type.

R5.	Separation of the description from the data

EAST descriptions are physically separated from the data to which they are related.

R6.	Physical representation capabilities

The EAST physical packages specify the bit pattern representation of the described data.

These requirements are high-level requirements, specified in the document “Language Usage in Information Interchange” (see reference �REF Ref_Language_Usage�[2]�). Additional detailed level requirements and EAST compliance are listed in Annex � REF _Ref349616084 \n �E�.

��SEQ chapitre \h \r 10 ���ACRONYMS AND GLOSSARY

This annex defines key acronyms and the glossary of terms which are used throughout this Report to describe the Data Description Language EAST.

A 1	ACRONYMS

ADID		Authority and Description IDentifier�ADU		Application Data Unit�ASCII		American Standard Code for Information Interchange�CA		Control Authority�CCSDS	Consultative Committee for Space Data Systems�DDL		Data Description Language�DDR		Data Description Record�DDU		Description Data Unit�DED		Data Entity Dictionary�DIL		Data Interchange Language�EAST		Enhanced Ada SubseT�EDU		Exchange Data Unit�MACAO	Member Agency Control Authority Office�MSB		Most Significant Bit�LSB		Least Significant Bit�SFDU		Standard Formatted Data Unit

A 2	GLOSSARY OF TERMS

ADID: in the context of EAST, an ADID is an identifier� XE "Identifier" � of the EAST recommendation within the CCSDS organization. See Reference �REF Ref_SFDU_Spec�[4]�.

Array type� XE "Array type" �: an array type is a composite type whose components are all of the same type. Components are selected by indexing.

Based literal� XE "Based literal" �: a based literal is a numeric literal expressed in a form that specifies the base explicitly.

Bit string: a bit string is a sequence of bits, each having the value 0 or 1.

Character literal� XE "Character literal" �: a character literal is formed by enclosing a graphic character between two apostrophe characters.

Character type� XE "Character type" �: a character type is an enumeration type that represents a character set.

Comment� XE "Comment" �: a comment starts with two adjacent hyphens and extends up to the end of the line.

Composite type� XE "Composite type" �: a composite type is a collection of components of the same or different types.

Constant� XE "Constant" �: a constant is a keyword that indicates that the identifier� XE "Identifier" � it qualifies has a unique and specified value.

Constrained array: a constrained array is an array with a constant� XE "Constant" � number of elements.

Delimiter� XE "Delimiter" �: a delimiter is one of the following compositions of special characters: 	& ' () * + , - . / : ; < = > | => .. ** := /= >= <= << >> <>

Discrete type� XE "Discrete type" �: a discrete type is either an integer type� XE "Integer type" � or an enumeration type. Discrete types may be used, for example, in case statements and as array indexes.

Discriminant� XE "Discriminant" �: a discriminant is a component of a record type whose value influences the structure of this record.

Elementary type: an elementary type does not have components.

Enumeration representation� XE "Enumeration representation clause" � clause: an enumeration representation clause specifies the bit pattern for each literal of the corresponding enumeration type.

Enumeration type� XE "Enumeration type" �: an enumeration type is defined by the list of its values, called enumeration literals, which may be identifiers or character literals. All values for a given enumeration type are different.

Identifier� XE "Identifier" �: an identifier is composed of letters, digits and underline characters.

Length clause� XE "Length clause" �: a length clause specifies the amount of storage in bits associated with a type.

Lexical element: a lexical element is either a delimiter, an identifier, a numeric literal, a string literal or a comment.

Literal: a literal is a value represented by its value itself instead of an identifier� XE "Identifier" �. A literal can be specialized as a numeric literal, an enumeration literal, a character literal, or a string literal.

Marker� XE "Marker" �: a marker is a constant� XE "Constant" � value provided by a data description. This value will be found in the data as an end-delimiter� XE "Delimiter" � of a repetition.

Numeric literal� XE "Numeric literal" �: a numeric literal is the value of a number, expressed by means of characters.

Object� XE "Object" �: an object is either a constant� XE "Constant" � or a variable� XE "Variable" �.

Predefined type� XE "Predefined type" �: a predefined type is a type provided by EAST, that is, a type that can be used in any EAST description without being previously declared.

Record representation clause� XE "Record representation clause" �: a record representation clause specifies the storage representation of the record type on the medium, that is, the order, position and size of record components (including discriminants, if any).

Record type� XE "Record type" �: a record type is a composite type consisting of zero or more named components, possibly of different types.

Representation clause: representation clauses specify the mapping between types of the language and their physical representation.

Scalar type� XE "Scalar type" �: scalar types are discrete types and real types.

Separator� XE "Separator" �: a separator is any of a space character, a control character or the end of a line (see � REF _Ref349616426 \n �3.1�).

String literal: a string literal is formed by a sequence of graphic characters (possibly none) enclosed between two quotation marks used as string brackets.

Subtype� XE "Suptype" �: a subtype is a type together with a constraint, which constrains the values of the type to satisfy a certain condition. The values of a subtype are a subset of the values of its type.

Type: a type is a named set of characteristics. This name can be used to define sets of values.

Unconstrained array: an unconstrained array is an array with a variable� XE "Variable" � number of elements.

Variable� XE "Variable" �: a variable is an identifier� XE "Identifier" � that represents a data item occurrence.

Variant� XE "Variant" � part: a variant part of a record specifies alternative record components, dependent on the discriminant� XE "Discriminant" � of the record. Each value of the discriminant establishes a particular alternative of the variant part.

Virtual� XE "Virtual discriminant" � Discriminant� XE "Discriminant" �: a virtual discriminant is a discriminant that is not included in the composite type that it discriminates.

��SEQ chapitre \h���SYNTAX RULES

This annex contains the usage rules identified in this document, followed by the page number to which they refer.

Rule �SEQ regle R1�1�:	�REF Rule1�The enumeration literals listed in an enumeration type definition are identifiers or character literals.�	�PAGEREF Rule1�3-7�

Rule �SEQ regle R2�2�:	�REF Rule2�The size of an enumeration type must always be provided; i.e., a length clause is mandatory.�	�PAGEREF Rule2�3-7�

Rule �SEQ regle R3�3�:	�REF Rule3�An enumeration representation clause is optional.�	�PAGEREF Rule3�3-7�

Rule �SEQ regle R4�4�:	�REF Rule4�If there is an enumeration representation clause, then each literal of the enumeration type must be provided with a unique bit pattern. The numeric value associated with this bit pattern must satisfy the ordering relation of the type (i.e., must increase). If no enumeration representation clause is provided, then default integer codes are presumed for binary encoded enumeration types: the value of the first listed enumeration literal is zero; the value for each other enumeration literal is one more than for its predecessor in the list. If no enumeration representation clause is provided, the enumeration type is maybe ASCII encoded according to the physical part of the EAST description (see 3.3.5).�	�PAGEREF Rule4�3-7�

Rule �SEQ regle R5�5�:	�REF Rule5�The types CHARACTER and STRING(F5) do not have to be declared in a data description. They are predefined types of EAST.�	�PAGEREF Rule5�3-9�

Rule �SEQ regle R6�6�:	�REF Rule6�The size of an integer type must always be specified.�	�PAGEREF Rule6�3-10�

Rule �SEQ regle R7�7�:	�REF Rule7�The size of a real type must always be specified.�	�PAGEREF Rule7�3-11�

Rule �SEQ regle R8�8�:	�REF Rule8�A component on which depends the existence of other components is called a discriminant� XE "Discriminant" � for the record type. The alternative lists of components are called variants of the record.�	�PAGEREF Rule8�3-14�

Rule �SEQ regle R9�9�:	�REF Rule9�A length clause must be provided for a record, every time it is possible. In some cases, no length clause can be provided for the record, because the length is undefined.�	�PAGEREF Rule9�3-14�

Rule �SEQ regle R10�10�:	�REF Rule10�If a record contains one or more discriminants, it is mandatory to provide a default discriminant� XE "Discriminant" � value for each of them.�	�PAGEREF Rule10�3-14�

Rule �SEQ regle R11�11�:	�REF Rule11�A length clause must be provided for an array, every time it is possible. For unconstrained array types, no length clause can be provided because they have an undefined number of elements. The number of elements is specified at the declaration of a data of this type.�	�PAGEREF Rule11�3-17�

Rule �SEQ regle R12�12�:	�REF Rule12�In the case of an unconstrained array, the constraint (i.e., the number of elements) is given to the instance at its declaration.�	�PAGEREF Rule12�3-17�

Rule �SEQ regle R13�13�:	�REF Rule13�If the lower bound of an index� XE "Index" � range is greater than the upper bound, the corresponding array row/column has no component.�	�PAGEREF Rule13�3-17�

Rule �SEQ regle R14�14�:	�REF Rule14�The variable� XE "Variable" � that is declared immediately before the constant� XE "Constant" � occurs an undetermined number of times, the last instance being followed by the constant value.�	�PAGEREF Rule14�3-22�

Rule �SEQ regle R15�15�:	�REF Rule15�The clause “when others =>” is mandatory if all the discriminant� XE "Discriminant" � values are not explicitly named in the record type definition.�	�PAGEREF Rule15�3-33�

Rule �SEQ regle R16�16�:	�REF Rule16�Component locations must not overlap, except if the components belong to distinct variants (i.e., belong to different alternative lists of components).�	�PAGEREF Rule16�3-33�

Rule �SEQ regle R17�17�:	�REF Rule17�The EAST Syntax requires the declaration of the fixed elements before the optional ones in a structure.�	�PAGEREF Rule17�3-33�

Rule �SEQ regle R18�18�:	�REF Rule18�Record representation clause� XE "Record representation clause" �s allow one or more elements of the fixed part to be placed after a variant� XE "Variant" � part, if and only if the variant part has a constant� XE "Constant" � length.�	�PAGEREF Rule18�3-33�

Rule �SEQ regle R19�19�:	�REF Rule19�A record representation clause must be provided every time it is possible. For variable components, representation clauses cannot be provided�	�PAGEREF Rule19�3-33�

Rule �SEQ regle R20�20�:	�REF Rule20�The order of record components is determined by the record representation clause. If the record representation clause is incomplete, the order of the components that have no representation clause is determined from the order within the record type definition.�	�PAGEREF Rule20�3-33�

Rule �SEQ regle R21�21�:	�REF Rule21�Each component identifier� XE "Identifier" � which begins with “VIRTUAL_” does not represent any data occurrence.�	�PAGEREF Rule21�3-33�

Rule �SEQ regle R22�22�:	�REF Rule22�EAST forbids identical names in a record.�	�PAGEREF Rule22�3-39�

Rule �SEQ regle R23�23�:	�REF Rule23�The number of characters used to encode the enumeration type must be the same for every enumeration literal of the type.�	�PAGEREF Rule23�3-60�

Rule �SEQ regle R24�24�:	�REF Rule24�All characters (i.e., the 256 characters of the “Latin Alphabet No. 1”—see reference [6]) are allowed and significant, including the space character.�	�PAGEREF Rule24�3-60�

Rule �SEQ regle R25�25�:	�REF Rule25�The physical representations of the enumeration literals are provided in the order of their declaration in the logical part.�	�PAGEREF Rule25�3-60�

Rule �SEQ regle R26�26�:	�REF Rule26�The array storage is optional (ARRAY_STORAGE_METHOD type and ARRAY_STORAGE constant� XE "Constant" �) if there is no multi-dimensional array in the logical part, or if the method is FIRST_INDEX_FIRST (default value).�	�PAGEREF Rule26�3-73�

Rule �SEQ regle R27�27�:	�REF Rule27�The octet storage is optional (BIT_ORDER type and OCTET_STORAGE constant� XE "Constant" �) if the method is HIGH_ORDER_FIRST (default value).�	�PAGEREF Rule27�3-73�

Rule �SEQ regle R28�28�:	�REF Rule28�The type REAL_PHYSICAL_DESCRIPTION is optional if there is no binary representation for real type to provide, i.e. if there is no binary real type in the logical part.�	�PAGEREF Rule28�3-73�

Rule �SEQ regle R29�29�:	�REF Rule29�The type INTEGER_PHYSICAL_DESCRIPTION is optional if there is no binary representation for integer type� XE "Integer type" � to provide, i.e. if there is no binary integer type in the logical part or if there are all considered as machine-independent integers (unsigned integers or two's complement signed integers).�	�PAGEREF Rule29�3-73�

Rule �SEQ regle R30�30�:	�REF Rule30�The type ASCII_ENUMERATION_PHYSICAL_DESCRIPTION is optional if there is no ASCII rep� XE "ASCII Representation" �resentation for enumeration type to provide, i.e. if there is no ASCII enumeration type in the logical part.�	�PAGEREF Rule30�3-73�

Rule �SEQ regle R31�32�:	�REF Rule31�The type ASCII_NUMERIC_PHYSICAL_DESCRIPTION is optional if there is no ASCII rep� XE "ASCII Representation" �resentation for integer or real type to provide, i.e. if there is no ASCII integer type� XE "Integer type" � and no ASCII real type in the logical part.�	�PAGEREF Rule31�3-73�

Rule �SEQ regle R31�32�:	�REF Rule32�The types BASIC_TYPE_NAMES and RELATION are optional if there is no representation to provide.�	�PAGEREF Rule32�3-73�

��SEQ chapitre \h���TOOLS FOR AN EAST ENVIRONMENT

This annex lists some of the available tools that are useful to check, generate, parse and analyze EAST DDRs.

The first group of tools is useful to the data definers, while the second group is useful to end users.

For additional information about the available tools, please contact the CCSDS Secretariat or the relevant MACAO (see reference �REF Ref_Control_Autho�[11]�).

C 1	DATA DEFINER TOOLS

�EMBED Designer \s * MERGEFORMAT���

�C 1.1	DATA DESCRIPTION RECORD GENERATOR

The description of data, using EAST, can easily be automated: in particular, the physical description which follows precise rules, as described in � REF _Ref349619238 \n �3.3�. A tool that automatically generates DDRs (including logical and physical description) is available. This tool, based on a Graphical User Interface, allows users, without any notion of the EAST language, to describe data logically, and the tool automatically generates a physical description according to the nature of a selected host machine. This physical description does not have to be visible to the user. On the contrary, the logical description is easy to understand (see � REF _Ref349619270 \n �3.2�) and is readable by any user.

C 1.2	DATA DESCRIPTION RECORD SYNTAX CHECKER

Most of the EAST DDRs should be produced by a tool that automatically generates correct DDRs. Nevertheless an EAST Syntax Checker might be useful to check the syntax of an EAST DDR.

If no syntax checker is available, the EAST description can be passed through an Ada compiler, because of the full compatibility of the EAST syntax with the Ada syntax. But one must keep in mind that such a verification does not ensure that the description is correct. If the description includes non-EAST features that are Ada features, the Ada compiler will not identify these.

C 1.3	DATA GENERATOR

Some users may have to describe data that will be generated in the future and does not yet exist. In this case, in addition to a data description tool, a data generation tool could be useful. This tool would generate data on a medium exactly as the user has described them, regardless of the host machine used to generate.

�C 2	END USER TOOLS

C 2.1	DATA INTERPRETER

�EMBED Designer \s * MERGEFORMAT���

Generally, it is necessary to have an Interpretation tool that parses, analyses, and converts data according to the host machine that will make use of the data. Such a tool is available. This tool analyses an EAST DDR, and offers access services from an application to data blocks described by this DDR.

�C 2.2	DATA FORMATTER

� EMBED Designer ���

If an interpretation tool is not available on a target machine, the use of a data formatter allows the interpretation of the data and their generation in a new format, regardless of the host machine used for the formatting process. This tool is mainly useful for the rehabilitation of historical data (e.g., to change some “strange” 60-bit reals into IEEE754 64 bit reals).

��SEQ chapitre \h���DATA DESCRIPTION RECORD EXAMPLES

This annex contains an example of a DDR in EAST.

The following EAST DDR provides the description of an imaginary (but realistic) telemetry.

A textual description, a graphical representation, and finally an EAST description are provided as follows:

D 1	Textual description

The telemetry is a flow of FORMATs. Each FORMAT is preceded by a SYNCHRO bit pattern (DF3 hexadecimal bit pattern). Each FORMAT is composed of 28 LINEs.

Each LINE begins with a field that identifies which scientific INSTRUMENT (CAMERA, ALTIMETER or INTERFEROMETER) data are provided by this LINE.

The first LINE field is followed by a DATE related to the first INSTRUMENT VALUE provided by the LINE. This DATE is composed of three sub-fields (DAY, MONTH and YEAR).

The end of the LINE (following INSTRUMENT and DATE) depends on the INSTRUMENT:

�SYMBOL 45 \f "Symbol"�	in a CAMERA line there are 40 (8 bits) VALUEs from the CAMERA;

�SYMBOL 45 \f "Symbol"�	in an ALTIMETER line there are 20 (16 bits) VALUEs from the ALTIMETER;

�SYMBOL 45 \f "Symbol"�	in an INTERFEROMETER line there are 10 (32 bits) VALUEs from the ALTIMETER.

So, each VALUE field has a constant� XE "Constant" � (320 bits) length.

�D 2	Graphical description

�

NOTE	�SYMBOL 45 \f "Symbol"�	The # sign after a field identifier� XE "Identifier" � means that this field is optional depending on the value of another field. Here each value field presence depends on the value of the instrument field.

D 3	Formal EAST description

package� XE "Package" � logical_TELEMETRY is

type A_SYNCHRO_PATTERN is (SYNCHRO_PATTERN) ;�for A_SYNCHRO_PATTERN use (SYNCHRO_PATTERN => 16#DF3#) ;�for A_SYNCHRO_PATTERN'size use 12 ; -- bits

type AN_INSTRUMENT is (CAMERA , ALTIMETER , INTERFEROMETER) ;�for AN_INSTRUMENT use (CAMERA => 0 , ALTIMETER => 1 , �	INTERFEROMETER => 2) ;�for AN_INSTRUMENT'size use 2 ; -- bits

type A_DAY_IN_A_MONTH is range 1 .. 31 ;�for A_DAY_IN_A_MONTH'size use 5 ; -- bits

type A_MONTH is (JANUARY, FEBRUARY, MARCH, APRIL, MAY, JUNE, JULY, �	AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER) ;�for A_MONTH use (JANUARY => 1 , FEBRUARY => 2 , MARCH => 3 , APRIL => 4 , �	MAY => 5 , JUNE => 6 , JULY => 7 , AUGUST => 8 ,�	SEPTEMBER => 9 , OCTOBER => 10, NOVEMBER => 11, �	DECEMBER => 12) ;�for A_MONTH'size use 4 ; -- bits

type A_YEAR is range 1950 .. 2100 ;�for A_YEAR'size use 12 ; -- bits

type A_DD_MM_YY_DATE is record�	DAY : A_DAY_IN_A_MONTH ;�	MONTH : A_MONTH ;�	YEAR : A_YEAR ;�end record ;�for A_DD_MM_YY_DATE'size use 21 ; -- bits �for A_DD_MM_YY_DATE use record�	DAY at 0 * WORD_32_BITS� XE "WORD_32_BITS" � range 0 .. 4 ;�	MONTH at 0 * WORD_32_BITS range 5 .. 8 ;�	YEAR at 0 * WORD_32_BITS range 9 .. 20 ;�end record ;

type A_CAMERA_VALUE is range 0 .. 255 ;�for A_CAMERA_VALUE'size use 8 ; -- bits

type CAMERA_VALUE_INDEX is range 1 .. 40 ;�for CAMERA_VALUE_INDEX'size use 6 ; -- bits

type CAMERA_DATA_VALUES is array (CAMERA_VALUE_INDEX) of �	A_CAMERA_VALUE ;�for CAMERA_DATA_VALUES'size use 320 ; -- bits

type AN_ALTIMETER_VALUE is range 0 .. 65535 ;�for AN_ALTIMETER_VALUE'size use 16 ; -- bits

type ALTIMETER_VALUE_INDEX is range 1 .. 20 ;�for ALTIMETER_VALUE_INDEX'size use 5 ; -- bits

type ALTIMETER_DATA_VALUES is array (ALTIMETER_VALUE_INDEX) of �	AN_ALTIMETER_VALUE ;�for ALTIMETER_DATA_VALUES'size use 320 ; -- bits

type AN_INTERFEROMETER_VALUE is range 0 .. 2147483646 ;�for AN_INTERFEROMETER_VALUE'size use 32 ; -- bits

type INTERFEROMETER_VALUE_INDEX is range 1 .. 10 ;�for INTERFEROMETER_VALUE_INDEX'size use 4 ; -- bits

type INTERFEROMETER_DATA_VALUES is array �	(INTERFEROMETER_VALUE_INDEX) of AN_INTERFEROMETER_VALUE;�for INTERFEROMETER_DATA_VALUES'size use 320 ; -- bits

type A_TELEMETRY_LINE (INSTRUMENT : AN_INSTRUMENT := CAMERA) is�record �	DATE : A_DD_MM_YY_DATE ;�	case INSTRUMENT is�		when CAMERA =>�			CAMERA_DATA : CAMERA_DATA_VALUES ;�		when ALTIMETER =>�			ALTIMETER_DATA : ALTIMETER_DATA_VALUES ;�		when INTERFEROMETER =>�			INTERFEROMETER : INTERFEROMETER_DATA_VALUES ;�		when OTHERS =>�			null ;�	end case ;�end record ;�for A_TELEMETRY_LINE use record�	INSTRUMENT at 0 * WORD_32_BITS� XE "WORD_32_BITS" � range 0 .. 1 ;�	DATE at 0 * WORD_32_BITS range 2 .. 22 ;�	CAMERA_DATA at 0 * WORD_32_BITS range 23 .. 342 ;�	ALTIMETER_DATA at 0 * WORD_32_BITS range 23 .. 342 ;�	INTERFEROMETER at 0 * WORD_32_BITS range 23 .. 342 ;

end record ;

type A_TELEMETRY_LINE_NUMBER is range 1 .. 28 ;�for A_TELEMETRY_LINE_NUMBER'size use 5 ; -- bits

type A_TELEMETRY_FORMAT is array (A_TELEMETRY_LINE_NUMBER) of �	A_TELEMETRY_LINE ;

type A_TELEMETRY_PACKET is record�	SYNCHRO : A_SYNCHRO_PATTERN ;�	TELEMETRY_FORMAT : A_TELEMETRY_FORMAT ;�end record ;�for A_TELEMETRY_PACKET use record�	SYNCHRO at 0 * WORD_32_BITS� XE "WORD_32_BITS" � range 0 .. 11 ; -- bits�end record ;

TELEMETRY_PACKET : A_TELEMETRY_PACKET ;

end logical_TELEMETRY ;

package� XE "Package" � physical_TELEMETRY is

-- of no use

end physical_TELEMETRY;

NOTE	�SYMBOL 45 \f "Symbol"�	The physical part of an EAST description usually includes the representation of scalar types, the way of storing arrays on the medium and the way of storing octets on the medium. In this example, there are no reals, no machine-dependent integers and no ASCII encoded scalar types, so the part related to the representation of scalar types is useless. The arrays are all one-dimensional arrays, so the information related to the way of varying indices� XE "Index" � is useless. The way of storing octets is by default HIGH_ORDER_FIRST, so this information item can also be missing.

��SEQ chapitre \h���COMPLIANCE MATRIX

This annex provides a compliance matrix according to detailed data description requirements.

Requirements		EAST Compliance

General features

	Naming of base data types	yes�	Aggregation of base data types	yes�	Naming of aggregations	yes�	Aggregation of aggregations	yes�	Choice (by discriminant� XE "Discriminant" �) of base data types	yes

		Immediately preceding discriminant� XE "Discriminant" �	yes	�		Remote preceding discriminant	yes	

	Choice (by discriminant� XE "Discriminant" �) of aggregations	yes	

		Immediately preceding discriminant� XE "Discriminant" �	yes	�		Remote preceding discriminant	yes	

		Calculated discriminant� XE "Discriminant" �	no

	Arrays of base data types	yes

	Arrays of aggregations	yes

		Arrays of >2 dimensions	yes

Features by base data type

	Integers (binary)	yes

		Complement types supported	yes

			0’s	yes

			1’s	yes

			2’s	yes

		Bit ordering	yes

			Random or special ordering	yes

		Byte ordering (MSB, LSB)	yes

			Other byte ordering	no

		Maximum and minimum value specifiable	yes

		Multiple ranges specifiable	no

	Character-coded numerical	yes

�	Enumerated	yes

		Highly flexible naming	yes

		Size in bits specifiable	yes

		Bit ordering	yes�

		Byte ordering	yes

		Physical representation	yes

	Logical	no�

		User definitions of TRUE and FALSE	yes

	Real	yes

		Size in bits specifiable	yes

		Maximum and minimum value specifiable	yes

		Multiple ranges specifiable	no

		Multiple locations of exponent/mantissa	yes

		Algorithm used is specifiable	yes

		Exponent position	yes

			Size in bits	yes

			Bit ordering	yes

			Byte ordering	yes

			Bias is specifiable	yes

		Mantissa position	yes

			Size in bits	yes

			Bit ordering	yes

			Byte ordering	yes

		Standard representations	

			IEEE754	yes

			DEC VAX	yes

			IBM “3081”	yes

			Mil_STD_1750A	yes

			others	yes�

	�Bit string	yes

		Size in bits specifiable	yes

		Bit ordering	yes4

		Byte ordering	yes

		Permitted bit patterns	yes

		Naming of bit pattern	yes

	Octet string	yes

		Size in octets	yes

		Octet ordering	yes

			Non sequential order	no

		Permitted values	no

	Null	yes

	Character string	yes

		Size in characters specifiable	yes

		Single byte characters	yes

		Double byte characters	no

		Different character sets	yes

		Definable subsets	yes

		Permitted values	yes

	Other useful types

		Times	no�

		Dates	no7

Discriminants by value of

	Integer	yes

	Enumerated	yes

	Logical	yes

	Bit string	yes

	Octet string	no

	Character string	no

	Aggregations	no

�Operations involving discriminants	

	Logical operations on several discriminants	yes

	Arithmetic operations on several discriminants	no

	Select an element on a multi-value discriminant� XE "Discriminant" �	yes

	If - Then -Else / Case	yes

	Do until a discriminant� XE "Discriminant" � reaches a limit	no

	Do While	no

	Do until	no

	Repeat until a calculated discriminant� XE "Discriminant" � is equaled	no

Software support

	Tool to generate description	yes

	Tool to generate in conformity with data from description	no

	Tool to check description syntax	no

	Tool to parse description and associated data,

	and build data structure tree	yes

	Tool to browse data structure tree and present/return values	yes

	Library to access data structures/values from software (callable tools)	prototype

�

��SEQ chapitre \h���COMPARISON BETWEEN ADA AND EAST

This annex provides the main differences between the Ada programming language and EAST. It is mainly addressed to Ada programmers.

F�SEQ note N_Base�1� on page �PAGEREF N_Base �3-5�	The Ada syntax allows any positive integer for the base; EAST indeed restricts the possible base values to 2, 8, 10 and 16.

F�SEQ note N_Length_Clause�2� on page �PAGEREF N_Length_Clause�3-6�	In Ada, the value of a length clause specifies an upper bound for the number of bits to be allocated to instances of the given type. In EAST, the value specifies the exact number of bits that any instance of the given type occupies.

F�SEQ note N_Rule4�3� on page �PAGEREF Rule4�3-7�	The rule 4 states that numeric value must increase: this EAST syntax rule is inherited from the Ada programming language and has been maintained for compatibility reasons.

F�SEQ note N_Boolean�4� on page �PAGEREF N_Boolean�3-8�	The Ada predefined type “BOOLEAN”, which is in Ada a particular enumeration type, is not provided in EAST as a predefined EAST type, because this Ada type is implementation-defined. The bit patterns associated with the values “TRUE” and “FALSE” depend on the host machine. The length of the predefined type BOOLEAN also depends on the host machine.

F�SEQ note N_Character�5� on page �PAGEREF N_Character�3-9�	The predefined types CHARACTER and STRING are exactly the same as in Ada (see reference �REF Ref_Ada95�[7]�).

F�SEQ note N_Array_Variable�6� on page �PAGEREF N_Array_Variable�3-16�	The declaration of data instances that have a variable� XE "Variable" � number of elements is correct because of the default discriminant� XE "Discriminant" � required by rule 10. In Ada, the default discriminant is a requirement only if there is an unconstrained part in the variant� XE "Variant" � structure. In EAST, the default discriminant is always mandatory. Therefore, in EAST, every instantiation does not have to include a discriminant value although the variant structure is required to have a discriminant.

F�SEQ note N_Record_Rep�7� on page �PAGEREF N_Record_Rep�3-24�	In Ada, a record representation clause specifies the storage representation of records in memory, that is the order, position and size of record components in memory of a given machine. In EAST, the record representation clause specifies the actual storage representation on the medium.

F�SEQ note N_Distance�8� on page �PAGEREF N_Distance�3-32�	If the logical part of and EAST description should be incorporated in an Ada program, the following statements should be first added:

		with System; -- before the keyword package� XE "Package" �

		and the definition of the chosen distance� XE "Distance" � for record representation clauses:

		WORD_16_BITS� XE "WORD_16_BITS" � : constant� XE "Constant" � = 16/System.Storage_Unit;�or�WORD_32_BITS� XE "WORD_32_BITS" � : constant = 32/System.Storage_Unit;

		The statement “with System;“ is referred to the System package� XE "Package" � implemented on an Ada Compiler. The expression “16/System.Storage_Unit” represents 16 bits while the expression “32/System.Storage_Unit” represents 32 bits, independently of the machine configuration.

		EAST only provides two numbers WORD_16_BITS� XE "WORD_16_BITS" � and WORD_32_BITS� XE "WORD_32_BITS" �, and not for example WORD_8_BITS or WORD_64_BITS. If the user wants to define one of the two last numbers and use it in a record representation clause, he must be aware, that the use of an 8 bit word is not portable on any architecture (e.g., not allowed on a 1750-A machine that has a 16 bit architecture). In the same way, a 64 bit word is not used on usual machines.

F�SEQ note N_Predefined_Num�9� on page �PAGEREF N_Predefined_Num�3-51�	The Ada programming language offers some predefined types and subtypes as character, string, Boolean, integer, float, natural, positive, etc.

		Some of them are completely defined, like CHARACTER and STRING. So they can be widely used.

		Some other ones (BOOLEAN, INTEGER, FLOAT, etc.) are implementation�defined: their binary representations (sign position, etc.) depend on the implementation. Such implementation�defined types must therefore be banished in any logical description. They are therefore not provided by EAST for the definition of data. There is no use restriction of these types in the physical part of an EAST description.

		The subtypes of implementation�defined types must be banished too:

		subtype� XE "Suptype" � NATURAL is INTEGER range 0 .. INTEGER'LAST;

		subtype� XE "Suptype" � POSITIVE is INTEGER range 1 .. INTEGER'LAST;

		E.g., the INTEGER predefined type is a 16 bit integer on a PC-DOS machine and a 32 bit integer on a SUN-UNIX machine.

F�SEQ note N_Order�10� on page �PAGEREF N_Order�3-65�	An EAST definition must appear before it is used. This rule is inherited from Ada.

��SEQ chapitre \h�INDEX

�� INDEX�Array type 3-15; 3-16; 5-4; A-1

ASCII Representation 3-40; 3-42; 3-43; 3-59; 3-60; 3-61; 3-62; 3-63; 3-73; 3-74; 5-4; B-3

Based literal A-1

Character literal A-1

Character type 3-9; A-1

Comment 3-1; 3-2; A-1

Composite type A-2

Constant 3-3; 3-15; 3-20; 3-21; 3-22; 3-23; 3-26; 3-33; 3-41; 3-45; 3-50; 3-54; 3-55; 3-58; 3-60; 3-61; 3-63; 3-70; 3-71; 3-73; 3-74; 3-76; 4-3; 4-4; 5-1; A-2; B-3; D-1; F-2

Delimiter 3-1; 3-2

Discrete type A-2

Discriminant 3-14; 3-25; 3-33; 3-40; 5-4; A-2; A-3; B-1; B-2; E-1; E-4; F-1

Distance 1-2; 3-32; F-2

Enumeration literal 3-7

Enumeration representation clause 3-6; 3-40; A-2

Enumeration type 3-5; 3-6; 3-7; 3-51; 3-60; 5-3; A-2

Identifier 2-2; 3-1; 3-2; 3-33; 3-55; 3-58; 3-60; 3-65; 3-70; A-1; A-2; A-3; B-2

Index 3-12; 3-15; 3-17; 3-42; 3-44; 4-5; B-2; D-5

Integer type 3-3; 3-10; 3-21; 3-40; 3-51; 3-52; 3-53; 3-59; 3-61; 3-65; 3-70; 3-73; 5-3; 5-4; 5-5; A-2; B-3

Length clause 3-6; 3-10; A-2

Logical description 2-3; 3-66; 3-67; 3-68; 3-69; 4-1

Marker 3-22; 3-23; A-2

Numeric literal A-2

Object 4-1; 4-2

Package 2-3; 3-55; 3-60; 3-65; 3-66; 3-70; 3-72; 3-73; 3-74; 4-1; 4-2; 4-3; 5-1; D-2; D-4; F-2

Physical description 2-3; 2-4; 3-45; 3-50; 3-53; 3-54; 3-55; 3-57; 3-58; 3-59; 3-60; 3-61; 3-63; 3-70; 3-71; 3-74; 3-75; 3-76; 3-77; 4-3; 4-4; 4-5

Predefined type A-2

Real type 3-11; 3-56; 3-58; 3-63; 5-4

Record representation clause 3-26; 3-27; 3-28; 3-29; 3-33; 3-41; A-3; B-2

Record type 3-12; 3-13; 3-24; 3-25; 3-30; 3-31; 3-32; A-3

Representation clause 3-6; 3-26; 3-27; 3-28; 3-29; 3-40; 3-41

Scalar type A-3

Separator 3-1; A-3

Suptype 3-3; 3-9; 3-18; 3-20; 3-36; 3-40; 5-1; A-3; F-2

Variable 1-3; 3-6; 3-15; 3-16; 3-17; 3-19; 3-22; 3-27; 3-28; 3-33; 3-38; 3-41; 3-66; A-2; A-3; B-2; F-1

Variant 3-26; 3-33; A-3; B-2; F-1

Virtual discriminant 3-34; 3-38; 3-39; 5-1; A-3

WORD_16_BITS 3-32; 5-1; F-2

WORD_32_BITS 3-32; 3-67; 3-68; 5-1; D-3; D-4; F-2

��

� The syntax is: base # value #

� The EAST Interpreter, used to access the data, has to compute the size of dynamic variables.

� All the components after “kind” are not located on a (32 bits) word boundary. That is why a component is located from the 8th bit of the word to the 71th, which is also the 7th of two words later.

� The bit ordering and byte ordering are linked together and specified in EAST using the type “BIT_ORDER”.

� The logical type is not predefined in EAST, but can be user-defined with the enumerated type.

� Every new standard can be accommodated in EAST.

� Not predefined in EAST but user-definable.

�

CCSDS DRAFT RECOMMENDATION FOR EAST SPECIFICATION

CCSDS REPORT—THE DATA DESCRIPTION LANGUAGE EAST—A TUTORIAL

CCSDS 644.0 -W-0.4	�PAGE * ROMAN�I�	March 1995	

CCSDS 645.0-G-1	Page � PAGE �3-62�	May 1997

THE DATA DESCRIPTION LANGUAGE EAST -- A TUTORIAL

CCSDS 644.0 -W-0.4	�PAGE * ARABIC�1�	March 1995	

CCSDS 645.0-G-1	Page I-� PAGE �1�	May 1997

