
DIOnAS Design Document

Version 5.1

Developed by Raytheon ITSS
Table of Contents

11.0
Introduction

1.1
Purpose
1
1.2
Scope
1
1.3
DIOnAS Version History
1
1.4
NSSDC System Description
4
2.0
DIOnAS Subsystem Design
7
2.1
Subsystem Diagram Description
7
2.2
Subsystem Use Cases
9
2.2.1
Submit Job Processing Request Use Case
9
2.2.2
Validate DIOnAS List File Use Case
9
2.2.3
Process Job Use Case
10
2.2.4
Tape Summary Report Use Case
13
2.2.5
Incomplete Job Report Use Case
14
2.2.6
Manual Taping Use Case
14
2.2.7
Start DIOnAS Server Server Use Case
15
2.2.8
External Data Provider AIP Processing Use Case
15
2.3
Information Architecture
16
3.0
DIOnAS Software
16
3.1
Software Component Interfaces
16
3.2
Commercial Off-The-Shelf Software
18
3.3
Government-Provided Software
18
3.4
NSSDC-Developed Software
19
3.4.1
DIOnAS Server
19
3.4.2
DIOnAS Client
19
3.4.3
Extractor Client
20
3.4.4
DIOnAS Utilities
20
3.4.5
Manual Taping Component
20
3.4.6
DIOnAS Database
20
4.0
Hardware
47
4.1
Hardware Functionality
47
4.2
Processors
48
4.3
Network Architecture
50
4.4
Resource Utilization
51
4.0
List of Appendixes
52

DIOnAS Design Document

1.0 Introduction

1.1 Purpose

This document provides an architecture for the Data Ingest and On-line Access (DIOnAS) Subsystem of the National Space Science Data Center (NSSDC) data management system.

1.2 Scope

It addresses the hardware, software, database and procedural architecture for DIOnAS components and their interfaces with other NSSDC subsystems.

1.3 DIOnAS Version History

	DIOnAS Version
	Release Date (yyyymmdd)

	Description

	███
	███
	██████████

1.4 NSSDC System Description

DIOnAS is a subsystem of the National Space Science Data Center (NSSDC). The NSSDC is depicted in Figures 1-1 and 1-2. Figure 1-1 shows the logical architecture of the NSSDC in a manner that is consistent with the ISO Archive Reference Model. Figure 1-2 shows the physical architecture of the NSSDC upon completion of the DIOnAS development. The NSSDC is comprised of hardware, software, database and procedural tools that enable the effective and timely ingesting and retrieval of data and information in support of the space science data provider and data customer communities.

As shown in the diagrams, Data Providers deliver Submission Information Packages (SIPs) to the NSSDC. During Ingest, SIPs are separated into two components, the Archival Information Package (AIP) and the Descriptor Information (DI). The AIP consists of the Content Information (CI) (i.e., science data and information) and Preservation Description Information (PDI) (i.e., attributes required to make the AIP self-documenting). The DI consists of scientific and other metadata about the AIP that aid researchers and analysts with their catalog and search requirements. The DI is used to update the NSSDC's science metadata database. The AIP is stored in the NSSDC archive. Before the AIP is stored, it is assigned a unique Archive Identifier (AI) and a location in the archive. A backup copy of the AIP is made and stored in the archive.

Data Customers obtain information about available data products via catalog / search software and files to find the data products they need. Their data may be in the permanent archive (off-line) or in the data dissemination area (on-line). If their data is in the data dissemination area they will be able to download it personally using file transfer, web-based, or other software. If their data is in the permanent archive, they will submit a request for their data. When it receives a request for permanent archive data, the NSSDC obtains location information, retrieves and disseminates the data.

[image: image1.wmf]Figure 1-1

NSSDC System Logical Architecture

Data Customers

&

Archive

Management

Staff

REQUEST

MANAGER

(

including

web and other

user interface

tools)

Archive

Interface

Views

Searches

ARCHIVAL STORAGE

(

preservation function)

- Electronic data

- Documents

- Film

- Other

LOCATOR SYSTEM

(

general ingest and

retrieval tool; manages

tokens associated with data

granules and locations of

granules in archive.)

- AIP name to Storage ID

- All other

metadata

for

searching

- All other info.

needs

DATA

MANAGEMENT

(

general

metadata

database)

Data Providers

&

Archive

Management

Staff

INGEST

MANAGER

(

including

web-based and

other tools for

submitting data

and archive

management)

Archive

Interface

Catalog/Search

Information

(Descriptor

Information)

DATA

DISSEMINATION

ENVIRONMENT)

Archive Info.

Package (AIP)

& Backups

AIPs

;

Submission

Info

Pkg

(SIP)

;

Request

Management

Ingest

Management

Dissemination

Info. Package

(DIP)

[image: image2.wmf]Figure 1-2

NSSDC System Physical Architecture

Data Customers

&

Archive

Management

Staff

REQUEST

SERVICES

Archive

Interface

ARCHIVAL STORAGE

(

preservation function)

- Electronic data

- Documents

- Film

- Other

Data Providers

&

Archive

Management

Staff

IDA/RSIRS

OFF-LINE

INGEST

MANAGER

AND

LOCATOR

Archive

Interface

DATA

DISSEMINATION

ENVIRONMENT)

Submission

Info

Pkg

(SIP)

;

Request

Management

Ingest

Management

Dissemination

Info. Package

(DIP)

DIOnAS

ON-LINE

INGEST

MANAGER

AND

LOCATOR

ARCHIVE

INVENTORY

DATABASE

SCIENCE

METADATA

AND

LOCATOR

DATABASE

Science and

Attribute Files

FTP/HTTP

Access to

Files

Media

Science

Catalog

Information

Archive

Info

Pkg

(AIP);

Descriptor

Information

(DI)

DI

2.0 DIOnAS Subsystem Design

The DIOnAS subsystem receives SIPs from external producers or from internal NSSDC sources and prepares the contents for storage and management within the archive and/or the on-line data dissemination area. DIOnAS accepts data delivered in the form of pre-packaged AIPs to be stored in the archive and data delivered as data files that must be packaged in AIPs before archive storage.

When processing individual data files, DIONAS combines the contents of any given data file and selected attributes of that file to create an NSSDC-defined canonical byte stream object and a corresponding attribute object. The two objects are bundled into an AIP.

DIOnAS stages AIPs to a Sun/Solaris-hosted disk, and then performs one or both of the following actions: 1. copies the AIP to a DLT and/or 2. splits the AIP into a data file and an attributes file for storage on a Sun/Solaris-hosted RAID mass storage system.

2.1 Subsystem Diagram Description

Subsystem Diagram: Figure 2-1 shows the DIOnAS hardware and software components and their interfaces that are necessary to satisfy the requirements for DIOnAS that are documented in Appendix A. Software is addressed at a subsystem level in section 2.3, and the software component designs are presented in detail in section 3. Hardware is addressed at a subsystem level in section 2.4. Because all hardware is off-the-shelf, there are no detailed hardware designs. Additionally, because human actions are critical to the successful setup and operation of DIOnAS, relevant procedures are specified in a separate Operator's / User's Guide.

[image: image3.wmf]

Figure 2

-

1

DIOnAS Subsystem Diagram

2.2 Subsystem Use Cases

The following "use cases" show how the operator invokes the DIOnAS components and how the components interact. Each step in the use cases is allocated to a DIOnAS component indicated in column 2. The use cases provide a preliminary, high-level design for the DIOnAS subsystem components.

2.2.1 Submit Job Processing Request Use Case

	Step
	Component
	Description
	Interface

	1
	Operator
	Submit one of several types of a job processing requests via the DIOnAS Client graphical interface:

· Create a new queued processing job request (DIOnAS list file submission)

· Restart an idle job (existing job not in the pending request queue)

· Pause a queued job processing request

· Reprioritize a queued job processing request

· Resume a queued job processing request that had been previously paused

· Delete a queued job processing request
	OPS-DC-01

	2
	DIOnAS Client
	Receive command from operator
	OPS-DC-01

	3
	DIOnAS Client
	If the request is to create a new processing job then validate the DIOnAS list file

 (See section 2.2.2 – Validate DIOnAS List File Use Case)
	

	4
	DIOnAS Client
	Send processing request to DIOnAS Server
	

	5
	DIOnAS Server
	Read processing request
	

	6
	DIOnAS Server
	Update XML file containing processing queue information to either:

· Add new job to the pending job queue

· Add an existing and idle job to the pending job queue

· Change the status of pending job to “PAUSED”

· Change the queue priority a pending job

· Change the status of a “PAUSED” pending job to “WAITING”:

· Delete a pending job processing request
	

	7
	DIOnAS Server
	Send processing request acknowledgement to DIOnAS Client
	

	8
	DIOnAS Client
	Receive processing request acknowledgement from DIOnAS server
	

	9
	DIOnAS Client
	Refresh user display from contents of updated XML file
	

2.2.2 Validate DIOnAS List File Use Case

	Step
	Component
	Description
	Interface

	1
	DIOnAS Client
	Inform operator that list file is being validated and processed
	DC-OPS-01

	2
	Operator
	Receive list file validation message
	DC-OPS-01

	3
	DIOnAS Client
	Validate format of the fields in the list file records
	OPS-DC-02

	4
	DIOnAS Client
	If any record in the list file fails validation

Then
	

	5
	DIOnAS Client
	Inform operator of list file validation error with a message and a log file
	DC-OPS-03

DC-OPS-02

	6
	Operator
	Receive validation error message and error log
	DC-OPS-03

DC-OPS-02

	7
	DIOnAS Client
	End processing of this job

Endif
	

	8
	DIOnAS Client
	Check that every science file in the list file is unique

· No other records in the list file contain the same science file value

· No other queued DIOnAS list files contain a record with the same science file value

· In the DIOnAS database, no records in the CASID table contain the same science file name in the REC_FILE_NAME field (done via direct SQL)

· In the DIOnAS database, no records in the RAID_FILES table contain the same science file name in the SCIENCE_FILE field (done via direct SQL)
	DC-OPS-04

	9
	DIOnAS Client
	Note any science files in a science file error log
	DC-OPS-04

	10
	DIOnAS Client
	If any duplicate science files were encountered during the duplication checks

Then
	

	11
	DIOnAS Client
	Prompt the operator with an option to discontinue job processing
	

	12
	Operator
	Respond to the DIOnAS Client prompt

Endif
	

	13
	DIOnAS Client
	If the operator choose to discontinue job processing

Then

End processing of this job

Else

Rejoin Submit Processing Request at step 4 (see section 2.2.1)

Endif
	

2.2.3 Process Job Use Case

Create new processing job

	Step
	Component
	Description
	Interface

	1
	DIOnAS Server
	Read next queued job processing request
	

	2
	DIOnAS Server
	If the queued request is a job restart request

Then
	

	3
	DIOnAS Server
	Request DIOnAS Database to check processing status of requested job
	

	4
	DIOnAS DB
	Receive job identification request from DIOnAS Server
	

	5
	DIOnAS DB
	Determine processing status of job
	

	6
	DIOnAS DB
	Return job status to DIOnAS Server

If job status is not idle

Then
	

	7
	DIOnAS Server
	Send message to operator advising that job can not be restarted
	DS-OPS-04

	8
	Operator
	Receive message from DIOnAS Server advising that job can not be restarted

Return to step 1 of Process Job Use Case

Endif
	DS-OPS-04

	9
	
	Endif
	

	10
	DIOnAS Server
	Request DIOnAS Database to create new job
	

	11
	DIONAS DB
	Receive from DIOnAS Server request to create new job
	

	12
	DIONAS DB
	Insert new job with unique job ID
	

	13
	DIONAS DB
	Return job insert operation status and new job ID to DIOnAS Server
	

	14
	DIOnAS Server
	Receive insert operation status and new job ID from DIOnAS Database
	

	15
	DIOnAS Server
	Read the input DIOnAS list file
	OPS-DC-02

	16
	DIOnAS Server
	For each record in the DIOnAS list file the DIOnAS Server passes the fields and the job ID to the DIOnAS Database
	

	17
	DIONAS DB
	Receive from DIOnAS Server request to add list file information to the database

If the job does not contain externally produced AIPs

Then
	

	18
	DIONAS DB
	Insert information from the DIOnAS Server into appropriate tables, assigning unique ASID and an associated unique CASID
	

	19
	DIONAS DB
	Return insert operation status and new CASID to DIOnAS Server
	

	20
	DIOnAS Server
	Receive insert operation status and new CASID from DIOnAS Database

Else
	

	21
	DIONAS DB
	Insert information obtained from DIOnAS Server list file and processing instructions from the database processing parameter table into appropriate tables, assigning unique CASID
	

	22
	DIONAS DB
	Return insert operation status and new CASID to DIOnAS Server
	

	23
	DIOnAS Server
	Receive insert operation status and new CASID from DIOnAS Database

Endif
	

	24
	DIOnAS Server
	If job creation and population was successful

Then
	

	25
	DIOnAS Server
	Send job startup announcement to operator
	DS-OPS-01

	26
	DIOnAS Server
	Send job started event log entry to the audit database

Else
	

	27
	DIOnAS Server
	Inform operator of job creation failure with a message and a log filet
	DS-OPS-02

DS-OPS-03

	28
	Operator
	Receive job creation error message and error log

Endif
	DS-OPS-02

DS-OPS-03

	29
	Operator
	Receive job startup announcement from DIOnAS Server
	DS-OPS-01

Create AIPs

	Step
	Component
	Description
	Interface

	30
	DIOnAS Server
	Send started migration phase event log entry to the audit database
	

	31
	DIOnAS Server
	Request DIOnAS Database to select outstanding migration requests from current job
	

	32
	DIOnAS DB
	Receive from DIOnAS Server request to select outstanding migration requests
	

	33
	DIOnAS DB
	Select all CASID from current job that have not completed Migrator processing
	

	34
	DIOnAS DB
	Return CASID selection result set to DIOnAS Server
	

	35
	DIOnAS Server
	Receive CASID selection result set from DIOnAS Database

If there are outstanding migration requests

Then
	

	36
	DIOnAS Server
	Create Migrator list file
	DDB-P-01

	37
	DIOnAS Server
	Invoke Migrator
	DS-P-01

	38
	PGU
	Receive invocation command from DIOnAS Server
	DS-P-01

	39
	PGU
	Process Migrator list file by writing archive information packages to staging disk
	DDB-P-01

	40
	PGU
	Write job-specific log file during Migrator processing
	P-DS-02

	41
	PGU
	Write job-specific diagnostic file during Migrator processing
	XP-OPS-01

	42
	PGU
	Exit with completion status
	P-DS-01

	43
	DIOnAS Server
	Receive Migrator completion status
	P-DS-01

	44
	DIOnAS Server
	Read Migrator log file
	P-DS-02

	45
	DIOnAS Server
	For each record in Migrator log file, request DIOnAS Database to update in the database Migrator processing status, the AIP size and the AIP CRC
	

	46
	DIOnAS DB
	Receive from DIOnAS Server request to update Migrator processor status, AIP size, and AIP CRC
	

	47
	DIOnAS DB
	Update matching record by updating Migrator processing status, AIP size, and AIP CRC
	

	48
	DIOnAS DB
	Return migration status, AIP size, and AIP CRC update operation status to DIOnAS Server
	

	49
	DIOnAS Server
	Receive migration status, AIP size, and AIP CRC update operation status from DIOnAS Database
	

	50
	DIOnAS Server
	Send event log entry to the audit database recording number of files migrated

Endif
	

	51
	DIOnAS Server
	Send migration phase ended event log entry to the audit database
	

Store AIPs on Tape

	Step
	Component
	Description
	Interface

	52
	DIOnAS Server
	Send started migration phase event log entry to the audit database
	

	53
	DIOnAS Server
	Send request to DIOnAS Database to identify outstanding tar requests from current job
	

	54
	DIOnAS DB
	Receive from DIOnAS Server request to select outstanding tar requests from current job
	

	55
	DIOnAS DB
	If all CASIDs from this job that are to written to tape have been migrated then select all CASIDs that are to be written to tape
	

	56
	DIOnAS DB
	Return CASID selection result set to DIOnAS Server
	

	57
	DIOnAS Server
	Receive CASID selection result set from DIOnAS Database

If there are outstanding tape copy requests

Then
	

	58
	DIOnAS Server
	Write a tar list file containing all AIP filenames in outstanding tar requests selection result set
	

	59
	DIOnAS Server
	Tar all AIPs specified in the tar list file to the job-specific tar archive file, recording activities in a log file
	DS-OPS-06

	60
	DIOnAS Server
	Check tar completion status -- if failure then abort the tape copy operation
	

	61
	DIOnAS Server
	Request DIOnAS Database to select designated DLT for current job
	

	62
	DIOnAS DB
	Receive from DIOnAS Server request to select designated DLT for current job
	

	63
	DIOnAS DB
	Select DLT for current job
	

	64
	DIOnAS DB
	Return DLT selection result set to DIOnAS Server
	

	65
	DIOnAS Server
	Receive DLT selection result set from DIOnAS Database
	

	66
	DIOnAS Server
	Command jukebox robotics to move the PRIMARY DLT from its jukebox slot to the DLT drive
	

	67
	DIOnAS Server
	Verify file 0 on PRIMARY tape (tape identifier) is correct for requested tape
	

	68
	DIOnAS Server
	Position PRIMARY tape after last good file on tape (tape position counter)
	

	69
	DIOnAS Server
	Write tar file for the job to PRIMARY tape
	

	70
	DIOnAS Server
	Rewind PRIMARY tape
	

	71
	DIOnAS Server
	Position tape to beginning of the tarfile for this job
	

	72
	DIOnAS Server
	Compare tarfile on disk with tarfile on PRIMARY tape
	

	73
	DIOnAS Server
	If the tarfiles do not match then abort tape copy operation
	

	74
	DIOnAS Server
	Rewind PRIMARY tape
	

	75
	DIOnAS Server
	Command jukebox robotics to move the PRIMARY DLT from the DLT drive to its jukebox slot
	

	76
	DIOnAS Server
	Check PRIMARY tape copy status -- if failure then abort the tape copy operation
	

	77
	DIOnAS Server
	Command jukebox robotics to move the BACKUP DLT from its jukebox slot to the DLT drive
	

	78
	DIOnAS Server
	Verify file 0 on BACKUP tape (tape identifier) is correct for requested tape
	

	79
	DIOnAS Server
	Position BACKUP tape after last good file on tape (tape position counter)
	

	80
	DIOnAS Server
	Write tar file for the job to BACKUP tape
	

	81
	DIOnAS Server
	Rewind BACKUP tape
	

	82
	DIOnAS Server
	Position tape to beginning of the tarfile for this job
	

	83
	DIOnAS Server
	Compare tarfile on disk with tarfile on BACKUP tape
	

	84
	DIOnAS Server
	If the tarfiles do not match then abort tape copy operation
	

	85
	DIOnAS Server
	Rewind BACKUP tape
	

	86
	DIOnAS Server
	Command jukebox robotics to move the BACKUP DLT from the DLT drive to its jukebox slot
	

	87
	DIOnAS Server
	Check BACKUP tape copy status -- if failure then abort the tape copy operation
	

	88
	DIOnAS Server
	For each file in tar list file request the DIOnAS Database to update AIP tar status
	

	89
	DIOnAS DB
	Receive from DIOnAS Server request to update AIP tar status
	

	90
	DIOnAS DB
	Update tar status in database
	

	91
	DIOnAS DB
	Return to DIOnAS Server status of tar update operation
	

	92
	DIOnAS Server
	Request the DIOnAS Database to update DLT status for current job
	

	93
	DIOnAS DB
	Receive from DIOnAS Server request to update DLT status for current job
	

	94
	DIOnAS DB
	Update DLT status for current job
	

	95
	DIOnAS DB
	Return to DIOnAS Server status of DLT update operation
	

	96
	DIOnAS Server
	Receive from DIOnAS Database status of tar status update operation

Endif
	

	97
	DIOnAS Server
	Send ended taping phase event log entry to the audit database
	

Create Science and Attribute File Pairs on RAID (nssdcftp)

	Step
	Component
	Description
	Interface

	98
	DIOnAS Server
	Send started splitting phase event log entry to the audit database
	

	99
	DIOnAS Server
	Request DIOnAS Database to identify destination directories of the Splitter requests in current job
	

	100
	DIOnAS DB
	Receive from DIOnAS Server request to identify destination directories of the Splitter requests for current job
	

	101
	DIOnAS DB
	Select all unique RAID directories for this job:

a) for which CASIDs are to be written to RAID

b) for which CASIDs have completed Migrator processing

c) for which there are CASIDS that have not been written to RAID
	

	102
	DIOnAS DB
	Return RAID directories selection result set to DIOnAS Server
	

	103
	DIOnAS Server
	Receive RAID directories selection result set from DIOnAS Database

If directories need to be created

Then
	

	104
	DIOnAS Server
	Create necessary directories
	

	105
	DIOnAS Server
	Request DIOnAS Database to identify outstanding Splitter processing requests for current job
	

	106
	DIOnAS DB
	Receive from DIOnAS Server request to identify outstanding Splitter requests for current job
	

	107
	DIOnAS DB
	Select all CASIDs from this job that:

a) are to be written to RAID

b) have completed Migrator processing

c) have not been written to RAID
	DDB-S-01

	108
	DIOnAS DB
	Return CASID selection result set to DIOnAS Server
	

	109
	DIOnAS Server
	Receive CASID selection result set from DIOnAS Database
	

	110
	DIOnAS Server
	Invoke Splitter arguments
	DS-S-01

	111
	Splitter
	Receive invocation command from DIOnAS Server
	DS-S-01

	112
	Splitter
	Process Splitter list file by writing canonical science files and their attributes files to directories on RAID disk
	DDB-S-01

	113
	Splitter
	Write log file during processing
	S-DS-02

	114
	Splitter
	Write diagnostics file during processing
	S-OPS-01

	115
	Splitter
	Exit with completion status
	S-DS-01

	116
	DIOnAS Server
	Receive Splitter completion status
	S-DS-01

	117
	DIOnAS Server
	Read Splitter log file
	S-DS-02

	118
	DIOnAS Server
	For each record in log file, send the DIOnAS Database the processing code
	

	119
	DIOnAS DB
	Receive from DIOnAS Server the processing code
	

	120
	DIOnAS DB
	Update database RAID and processing fields for matching CASID
	

	121
	DIOnAS DB
	Return Splitter update operation status to DIOnAS Server
	

	122
	DIOnAS Server
	Receive Splitter update operation status from DIOnAS Database
	

	123
	DIOnAS Server
	Send event log entry to the audit database recording number of files split

Endif
	

	124
	DIOnAS Server
	Send ended splitting phase event log entry to the audit database
	

Post-processing clean-up and job close-out

	Step
	Component
	Description
	Interface

	125
	DIOnAS Server
	Send started cleanup phase event log entry to the audit database
	

	126
	DIOnAS Server
	Request DIOnAS Database to select CASIDs from this job that have completed processing
	

	127
	DIOnAS DB
	Receive from DIOnAS Server request to select CASIDs that have completed processing
	

	128
	DIOnAS DB
	Select CASIDs from this job that:

a) have completed Migrator processing

b) have completed tape copying or were not flagged to be written to tape

c) have completed Splitter processing or were not flagged to be written to RAID

d) have not already been cleaned up
	

	129
	DIOnAS DB
	Return CASID selection result set to DIOnAS Server
	

	130
	DIOnAS Server
	Receive CASID selection result set from DIOnAS Database

If there are outstanding file cleanup requests

Then
	

	131
	DIOnAS Server
	Delete selected AIPs record non-fatal errors in error log
	DS-OPS-05

	132
	DIOnAS Server
	For each AIP deleted request the DIOnAS Database to update AIP cleanup status
	

	133
	DIOnAS DB
	Receive from DIOnAS Server request to update AIP cleanup status
	

	134
	DIOnAS DB
	Update cleanup status
	

	135
	DIOnAS DB
	Return to DIOnAS Server status of cleanup update operation
	

	136
	DIOnAS Server
	Receive from DIOnAS Database status of cleanup update operation
	

	137
	DIOnAS Server
	Request DIOnAS Database to select AIPs from this job that have not completed AIP cleanup
	

	138
	DIOnAS DB
	Receive from DIOnAS Server request to select AIPs that have not completed AIP cleanup
	

	139
	DIOnAS DB
	Select CASIDs from this job that have an incomplete AIP cleanup status
	

	140
	DIOnAS DB
	Return CASID selection result set to DIOnAS Server
	

	141
	DIOnAS DB
	Send to DIOnAS Server status of uncompleted cleanup select operation
	

	142
	DIOnAS Server
	Receive CASID selection result set from DIOnAS Database

If there are no uncompleted cleanup requests for this job

Then
	

	143
	DIOnAS Server
	Request the DIOnAS Database to delete from the processing status table all records associated with this job
	

	144
	DBM
	Receive from the DIOnAS Server the request to delete all processing status table entries for this job
	

	145
	DIONAS DB
	Delete all processing status entries for this job
	

	146
	DIONAS DB
	Return to DIOnAS Server status of processing status entries deletion
	

	147
	DIOnAS Server
	Receive from DIOnAS Database status of processing status entries delete operation

Endif

Endif
	

	148
	DIOnAS Server
	Send ended cleanup phase event log entry to the audit database

If cleanup requests have been processed

Then
	

	149
	DIOnAS Server
	Send job completed event log entry to the audit database

Else
	

	150
	DIOnAS Server
	Send job reached idle phase event log entry to the audit database

Endif
	

2.2.4 Tape Summary Report Use Case

	Step
	Component
	Description
	Interface

	1
	Operator
	Send command to generate tape summary report, passing tape specification as input argument
	

	2
	DIOnAS Client
	Receive command from operator
	

	3
	DIOnAS Client
	Request DIOnAS Database to construct tape report
	

	4
	DIONAS DB
	Receive from DIOnAS Client request to construct tape report
	

	5
	DIONAS DB
	1 Select all tar files on specified tape processing

2 Write tape summary report to a file
	

2.2.5 Incomplete Job Report Use Case

	Step
	Component
	Description
	Interface

	1
	Operator
	Send command to generate job report on an active job, passing the job sequence number as the argument
	

	2
	DIOnAS Client
	Receive command from operator
	

	3
	DIOnAS Client
	Request DIOnAS Database to construct incomplete job report
	

	4
	DIONAS DB
	Receive from DIOnAS Client request to construct job report
	

	5
	DIONAS DB
	If the job is still active

Then
	

	6
	DIONAS DB
	Select all CASIDS for the job
	

	7
	DIONAS DB
	Write report to a file

Endif
	

	8
	DIONAS DB
	Return status to DIOnAS Client
	

2.2.6 Manual Taping Use Case

	Step
	Component
	Description
	Interface

	1
	Operator
	Invoke tapecopy program and supply job sequence number
	

	2
	Tapecopy
	Check database to:

a) ensure the job exists and is ready for taping

b) get the label of tape for the job

c) get the tape position counter for the tape (number of files successfully written to tape)
	

	3
	Tapecopy
	Prompt operator to mount primary tape
	

	4
	Operator
	Mount primary tape and respond to tape mount prompt
	

	5
	Tapecopy
	Verify file 0 on primary tape (tape identifier) is correct for requested tape

If incorrect tape is mounted then send a message with that information to the operator and exit
	

	6
	Tapecopy
	Position primary tape after last good file on tape (tape position counter)
	

	7
	Tapecopy
	Write tar file for the job to primary tape
	

	9
	Tapecopy
	Rewind primary tape
	

	10
	Tapecopy
	Position tape to beginning of the tar file for this job
	

	11
	Tapecopy
	Compare tar file on disk with tar file on primary tape

If the tar files do not compare then send a message with that information to the operator and exit
	

	12
	Tapecopy
	Update TAPE_STAT in database
	

	13
	Tapecopy
	Rewind primary tape
	

	14
	Tapecopy
	Prompt operator to mount backup tape
	

	15
	Operator
	Mount backup tape and respond to tape mount prompt
	

	16
	Tapecopy
	Verify file 0 on backup tape (tape identifier) is correct for requested tape

If incorrect tape is mounted then send a message with that information to the operator and exit
	

	17
	Tapecopy
	Position tape after last good file on backup tape (tape position counter)
	

	19
	Tapecopy
	Write tar file for the job to backup tape
	

	20
	Tapecopy
	Rewind backup tape
	

	21
	Tapecopy
	Position backup tape to beginning of the tar file for this job
	

	22
	Tapecopy
	Compare tar file on disk with tar file on backup tape

If the tar files do not compare then send a message with that information to the operator and exit
	

	23
	Tapecopy
	Update BACKUP_STAT in database
	

	24
	Tapecopy
	Rewind backup tape
	

	25
	Tapecopy
	Prompt operator remove backup tape
	

	26
	Operator
	Remove backup tape
	

2.2.7 Start DIOnAS Server Use Case

	Step
	Component
	Description
	Interface

	1
	Operator
	Issue server startup command
	

	2
	DIOnAS Server
	Receive server startup command from operator
	

	3
	DIOnAS Server
	Prompt operator username and password for:

1. Account that handles email data delivery notifications from external data providers

2. Oracle user account used for database connections
	

	4
	Operator
	Supply requested usernames and passwords
	

	5
	DIOnAS Server
	Read DLT data from java serialization file, tapes.ser
	

	6
	DIOnAS Server
	Scan jukebox bar codes

If auto scanning of any jukebox slots was specified in command line

Then
	

	7
	DIOnAS Server
	Load each tape and read DIOnAS tape label (file 0 on tape)

Endif
	

	
	DIOnAS Server
	Do until negative operator response
	

	8
	DIOnAS Server
	Prompt operator for tape initialization
	

	9
	DIOnAS Server
	If the operator responds with the slot number of an uninitialized tape
	

	10
	DIOnAS Server
	Prompt operator for label and PRIMARY/BACKUP designation
	

	11
	DIOnAS Server
	Load tape, write label file on tape, unload tape

End do
	

	12
	DIOnAS Server
	Update tapes.ser file
	

	13
	DIOnAS Server
	Go to server mode
	

2.2.8 External Data Provider AIP Processing Use Case

	Step
	Component
	Description
	Interface

	1
	External data provider
	Deliver files via FTP to project-specific receiving directory.

At a minimum:

Manifest file listing all files in delivery

Log file from PGU run

Diagnostic file from PGU run

May also include:

 PGU results log
	X-EC-02

XP-EC-01

XP-OPS-01

XP-OPS-02

	2
	External data provider
	Send notification via email of data delivery
	X-EC-01

	3
	Extractor client
	Process any newly received email message from an authorized external data provider
	

	4
	Extractor client
	Validate the data delivery. If any of the following verifications fail then processing of the data delivery is aborted and an email notification of the failure is sent to the data provider and operator of failure

1. Verify that manifest file is present in the FTP delivery area

2. Verify that manifest file is not empty

3. Verify that all AIPs and other files listed in manifest file are present

4. Verify the PGU log file is in valid format

5. Verify that all manifest file AIP entries are also in the PGU log file

6. Verify each AIP file size against PGU log file value

7. Verify each AIP CRC against PGU log file value
	

	5
	Extractor client
	Create a directory devoted to this data delivery and move delivered files to it
	

	6
	Extractor client
	Inform data provider through email about any PGU log records that failed validation
	EC-X-01

	7
	Extractor client
	Create extractor list file, one record for every valid record in PGU log.
	DDB-E-01

	8
	Extractor client
	Invoke extractor. If the extractor terminates abnormally then processing of the data delivery is aborted and an email notification of the failure is sent to the data provider and operator of failure.
	EC-E-01

	9
	Extractor client
	Read extractor log file, create a data delivery processing report

For each extractor log file record, parse and validate

If AIP successfully processed by extractor

Then

Write record reporting successfully delivered AIP

Else

Write record reporting unsuccessfully delivered AIP

Endif
	E-EC-02

	10
	Extractor client
	Email data delivery processing report to the data provider and operator.
	

	11
	Extractor client
	Call stored procedure DBM_INS_EXT_CASID to insert database records, passing information from extractor log file.
	

	12
	DIOnAS DB
	Return status to extractor client
	

	13
	Extractor client
	Receive database operation status from DIOnAS Database
	

	14
	Extractor client
	Submit job processing request to the DIOnAS Server
	

	15
	Extractor client
	Wait 10 minutes
	

2.3 Information Architecture

The DIOnAS subsystem, as shown in Figure 2-2, is conceived for the purpose of processing a science data file that has been placed on a VMS staging disk. From the science data file and externally provided information, attribute information is created. Then one or both of the following happen:

A) The science data and attribute information are bundled into an Archive Information Package (AIP) that is written to media for possible storage in the NSSDC's permanent archive.

B) The science data and attribute file are separately stored on disk in the NSSDC's data dissemination environment.

[image: image4.wmf]

Figure 2

-

2

DIOnAS

Information Architecture

DIOnAS

Data/attribut

es

Disseminati

on

Environme

nt

AIP / media

for

Permane

nt

Archiv

e

Data

from

Providers

on

VMS

staging

disk

1. Create attributes

2. Bun

dle data and attributes

3. Store AIP on media

4. Store split data and

attributes on disk

3.0 DIOnAS Software

The DIOnAS subsystem employs commercial off-the-shelf software applications (COTS), government-provided software applications (GOTS), as well as NSSDC-developed software. Although only brief descriptions of the COTS and GOTS products are provided herein, their interfaces with DIOnAS components are specified. The NSSDC-developed DIOnAS application software is more fully described.

3.1 Software Component Interfaces

The DIOnAS component interfaces provide well-defined command and data links between the DIOnAS components without specifying internal component processing algorithms. The following table lists the DIOnAS component interfaces shown in the subsystem architecture diagram 2-1. Detailed interface definitions are alphabetically listed by their interface identifier in Appendix C.

	Identifier
	From
	To
	Comment

	DC-OPS-01
	DIOnAS Client
	Operator
	Validation in progress notification

	DC-OPS-02
	DIOnAS Client
	Operator
	Error log file

	DC-OPS-03
	DIOnAS Client
	Operator
	Job error notification

	DC-OPS-04
	DIOnAS Client
	Operator
	Duplicate science file error log

	DDB-E-01
	DDB
	Extractor
	Extractor list file

	DDB-P-01
	DDB
	PGU
	PGU list file

	DDB-S-01
	DDB
	Splitter
	Splitter list file

	DS-OPS-01
	DIOnAS Server
	Operator
	Job start notification

	DS-OPS-02
	DIOnAS Server
	Operator
	Job creation error message

	DS-OPS-03
	DIOnAS Server
	Operator
	Job creation error log

	DS-OPS-04
	DIOnAS Server
	Operator
	Job not idle error message

	DS-OPS-05
	DIOnAS Server
	Operator
	Cleanup error file

	DS-OPS-06
	DIOnAS Server
	Operator
	Tapecopy log file

	DS-OPS-07
	DIOnAS Server
	Operator
	Job restart error message

	DS-OPS-08
	DIOnAS Server
	Operator
	Job restart error log

	DS-P-01
	DIOnAS Server
	PGU
	PGU invocation

	DS-S-01
	DIOnAS Server
	Splitter
	Splitter invocation

	EC-E-01
	Extractor Client
	Extractor
	Extractor invocation

	EC-OPS-01
	Extractor Client
	Operator
	External job error report

	EC-X-01
	Extractor Client
	External Data Provider
	Error status to external provider

	E-EC-01
	Extractor
	Extractor Client
	Extractor run status

	E-EC-02
	Extractor
	Extractor Client
	Extractor log file

	E-OPS-01
	Extractor
	Operator
	Extractor diagnostic file

	OPS-DC-01
	Operator
	DIOnAS Client
	Command line job start

	OPS-DC-02
	Operator
	DIOnAS Client
	DIOnAS list file

	P-DS-01
	PGU
	DIOnAS Server
	PGU run status

	P-DS-02
	PGU
	DIOnAS Server
	PGU log file

	P-OPS-01
	PGU
	Operator
	PGU diagnostic file

	S-DS-01
	Splitter
	DIOnAS Server
	Splitter run status

	S-DS-02
	Splitter
	DIOnAS Server
	Splitter log file

	S-OPS-01
	Splitter
	Operator
	Splitter diagnostic file

	X-EC-01
	External Data Provider
	Extractor Client
	External delivery notification

	X-EC-02
	External Data Provider
	Extractor Client
	External delivery manifest file

	XP-EC-01
	External PGU
	Extractor Client
	PGU log file

	XP-OPS-01
	External PGU
	Operator
	PGU diagnostic file

	XP-OPS-02
	External PGU
	Operator
	PGU results file

3.2 Commercial Off-The-Shelf Software

The following are brief descriptions of the DIOnAS COTS software applications.

1. Oracle RDBMS, Version 8.1 - Oracle is a relational database management system that provides the capability to effectively and efficiently store data in and retrieve data from tables. Table data can be accessed and linked to data in other tables via key fields. Oracle provides a programmatic interface that will be exercised by the DIOnAS Server component to submit SQL commands such as Insert, Update and Select.

2. Oracle JDBC drivers – Java Data Base Connectivity drivers are used to connect Java applications to Oracle servers.

3. Sun Solaris, Version 7 - Solaris is the Sun operating system that will coordinate operations on the DIOnAS host machine (nssdcftp). It includes native capabilities for multi-processing, inter-process communications, and all other ANSI Unix capabilities.

4. JAVA Development Kit (JDK) version 1.3.1 - Sun’s suite of utilities for developing, debugging, and executing JAVA programs. It includes the interpreter, class libraries, compiler, and debugger.

5. Apache Web Server - The Apache WEB Server provides a robust, commercial-grade, featureful, and freely available source code implementation of an HTTP (Web) server. Apache was originally based on code and ideas found in the most popular HTTP server, then evolved into a superior system which can rival almost any other UNIX based HTTP server in terms of functionality, efficiency and speed.
6. Washington University File Transfer Protocol Server - The WUFTP Server provides a secure method of transferring files between machines and/or over the Internet. The many features include logging of transfers, logging of commands, on the fly compression and archiving, classification of users type and location, per directory upload permissions, per class limits, restricted guest accounts, directory alias, filename filter and virtual host support.
7. MetaStor SYMplicity Storage Manager - The SYMplicity software is a graphical software solution from LSI logic for RAID management. Combining the redundant RAID system with a graphical user interface (GUI) makes it easy to understand and even easier to use. The SYMplicity software safeguards the data paths, data can always be accessible even in the event of a catastrophic component failure along the I/O path and the redundant disk array controllers make the unit fault tolerant. With both controllers active when not in fail over mode the total I/O bandwidth is twice that of a single controller. SYMplicity software has a performance-monitoring module that keeps track of key performance metrics.
8. ANTLER 2.7.0 – ANTLER is a parser-generation tool used by DIOnAS to validate the syntax of VMS file names.

9. Swing 1.1.1 - GUI package used by DIOnAS to send messages to background to foreground threads.

3.3 Government-Provided Software

The following are brief descriptions of the DIOnAS GOTS software applications.

1. Package Generator Utility (PGU), Version 4.2 - PGU is a utility program that combines the contents of a file and selected file attributes to create an archive-defined canonical byte stream object and a corresponding attribute object which are bundled into a single Archive Information Object (AIP). The AIP is independent of any underlying operating system or file system and therefore may be moved across systems without corruption as long as the underlying systems support byte streams. The information content of the AIP is sufficient to allow reconstituting the original file.

2. Package Splitter Utility (PSU), Version 4.1 - PSU is a utility program that splits a bundled AIP into a science data file and an attributes file to support data dissemination to users.

3. Extractor Utility, Version 1.0 – Extractor is a utility program that extracts attribute information from AIPs.

3.4 NSSDC-Developed Software

The NSSDC-developed DIOnAS software consists of the major components described below.

3.4.1 DIOnAS Server

The DIOnAS Server runs in two threads. The first thread maintains the queue of pending job requests. This first thread receives processing request submissions from the DIOnAS Client and Extractor Client and modifies an XML file used to hold queued requests. The second thread processes jobs, selecting the topmost job from the pending job queue and performing the various ingest processes. The major DIOnAS Server classes are as follows:

1. IMServer
Interacts with the IMClient Class to ensure that job information is received and processed properly. Interacts with the Archive Inventory Database to ensure that job information is properly stored. Interacts with the IMJob Class to ensure that each job is started correctly. Six design functions.

2. IMJob
Coordinates the four DIOnAS server job processing activities: migrating, tape copy, splitting, and post-processing cleanup.

3. IMMigrator
Creates an AIP, consisting of a bundled science file and attributes file, and places the file in a staging area on the Unix disk.

4. IMSplitter
Splits an AIP into a science file and a corresponding attributes file, and stores the files on the RAID disk.

5. IMTapeCopy
Uses the tape archive utility (TAR) to copy all Tar AIPs from a job into a single tar archive file in the Unix staging area for later copy to DLT.

6. IMCleanupAfter
completion of a job, deletes temporary files and database tables.

3.4.2 DIOnAS Client

The DIOnAS Client provides a graphical operator interface, sends processing requests input by the operator to the DIOnAS server, and validates DIOnAS processing list files. The DIOnAS Client is designed to function as two major classes:

1. IMClient
Provides a command line request submission capability. Interacts with the Operator for each job submitted. Forms processing requests that the DIOnAS message utility delivers to the DIOnAS Server.

2. IMClientGUI
Provides a graphical user interface to allow the operator to manipulate the DIOnAS subsystem.

3.4.3 Extractor Client

The Extractor Client accepts and validates deliveries of AIPs generated by an external data provider. It generates new job requests to ingest these AIPs and sends then to the DIOnAS Server to be added to the pending job queue. The major classes are:

1. IMExtractorClient
Receives external AIP files for archiving. Invokes IMExtractor to extract data from AIP files and IMJob Class to perform tape copy and splitting functions.

2. IMExtractor
Extracts various data from AIP files.

3.4.4 DIOnAS Utilities

The Utilities component is designed to function as two classes of callable methods as described below:

1. Util Class
Provides a set of utility methods that are useful to other components.

2. Messenger Class
Provides a common means of inter-process communication. This class supports messages -- collections of Java variables, indexed by name, which can be sent and received by agents on a network. Message sending and receiving is done through serialized files. The use of time-tags in the file names ensures that communications are processed in the appropriate sequence.

3.4.5 Manual Taping Component

The Manual Taping component is responsible for accurately writing data to permanent archive media in the absence of a functioning automated DLT library. A single stand-alone DLT drive attached to the DIOnAS host machine provides the physical means to record data. The operator invokes a script that records data to primary media and to backup media.

A single script, "Launch_Tapecopy", performs the current media management functions:

1. Prompts operator to mount and remove tapes from the ndadse stand-alone DLT drive

2. Queries the DIOnAS database to verify job status

3. Queries the DIOnAS database to identify correct tape label and number of files written to a tape

4. Verifies that the correct primary and backup tapes are mounted

5. Automatically positions tapes

6. Writes the tar file for a given job to tape

7. Compares tar files on tape to the source tar files on disk

8. Updates the processing status in the DIOnAS database

3.4.6 DIOnAS Database

The DIOnAS database maintains DIOnAS job processing status and AIPs metadata. It also contains processing instructions for those datasets that are packaged into AIPs at external sites and then delivered to the NSSDC. DIOnAS job processing is database-driven. When a job is created all information required to process that job will be inserted into the database. The application software queries the database for processing instructions and updates status upon completion of the various job processing phases.

A detailed DIOnAS Database dictionary is specified in Appendix D. Also, see DDB component interface data definitions in Appendix C.

Communication with other DIOnAS components is done through PSQL Oracle stored procedures with well-defined application programming interfaces. Those procedures are listed below:

A) dbm_ins_job

1) Description: Insert new job record into the database.

2) Arguments:

	Field #
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Job Number
	O
	INTEGER
	returned by DBM_INS_JOB stored procedure

	2
	List File Name
	I
	STRING
	OPS-IM-01

3) Processing / Algorithms

(a) Receive from DIOnAS Server request to create new job

(b) Insert new entry into Job table

(i) Create new JOB_SEQ with unique number

(ii) Insert List File Name in LIST_FILE

(iii) Create a new JOB_START by inserting SYSDATE

(iv) Insert a null in JOB_END

(c) Insert new entry into JOB_STAT table

(i) Copy JOB_SEQ from Job table

(ii) Initialize JOB_PHASE to 1 = "Migrate Phase"

(iii) Initialize PHASE_START by inserting SYSDATE

(iv) Initialize JOB_ERROR to 0

(d) Return JOB_SEQ in the first argument

(e) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – newJob

(b) Description – inserts a new job record into the database

(c) Inputs

(i) String listFilePathname – the name of the DIOnAS list file

(d) Outputs

(i) JobStatus jobStatus – the JobStatus object that contains the new job sequence number and the job’s start date

(ii) Exception IOException – if there was a problem with manipulating the DIOnAS list file

(iii) Exception SQLException – if there was a problem with using the database
B) dbm_ins_casid

1) Description: Insert new common archive storage ID record into the database for science data files provided by the NSSDC.

2) Arguments:

	Field #
	Name
	I/O
	JDBC Type
	IF Spec

	1
	p_job_seq
	I
	INTEGER
	returned by DBM_INS_JOB

	2
	p_casid
	O
	INTEGER
	PK of CASID table

	3
	p_src_pname
	I
	STRING
	OPS-IM-02

	4
	p_src_fname
	I
	STRING
	OPS-IM-02

	5
	p_science_path
	I
	STRING
	OPS-IM-02

	6
	p_science_file
	I
	STRING
	OPS-IM-02

	7
	p_tape_spec
	I
	STRING
	OPS-IM-02

	8
	p_split_flag
	I
	STRING
	OPS-IM-02

	9
	p_tape_flag
	I
	STRING
	OPS-IM-02

	10
	p_nssdc_collid
	I
	STRING
	OPS-IM-02

	11
	p_format_id
	I
	STRING
	OPS-IM-02

	12
	p_ord_appl_encod
	I
	STRING
	OPS-IM-02

	13
	p_id_encod_fmt
	I
	STRING
	OPS-IM-02

	14
	p_proj_id
	I
	STRING
	OPS-IM-02

	15
	p_datatype
	I
	STRING
	OPS-IM-02

	16
	p_entry_id
	I
	STRING
	OPS-IM-02

	17
	p_sup_ent_id
	I
	STRING
	OPS-IM-02

	18
	p_data_start
	I
	DATE/TIME
	Converted from the STRING in OPS-IM-02

	19
	p_data_stop
	I
	DATE/TIME
	Converted from the STRING in OPS-IM-02

	20
	p_prop_flag
	I
	STRING
	OPS-IM-02

	21
	p_bin_asc_flag
	I
	STRING
	OPS-IM-02

	22
	P_AIP_PATH
	I
	STRING
	This is in the JAVA properties file

3) Processing / Algorithms

(a) Receive from DIOnAS Server request to add AIP information from DIOnAS list file
(b) Insert new entry into CASID table

(i) Create new CASID with unique number

(ii) Create new ASID, appending CASID to "NSDC"

(iii) Insert JOB_SEQ from input argument

(iv) Insert SCIENCE_FILE from input argument

(v) Insert NSSDC_COLLID from input argument

(vi) Insert PROP_FLAG from input argument

(vii) Insert DATE_START from input argument

(viii) Insert DATE_STOP from input argument

(ix) Insert AIP_NAME (unique AIP constructed by removing the SCIENCE_FILE extension, appending the CASID to the remainder, and adding the extension ".AIP")

(x) Initialize AIP_SIZE to null

(xi) Initialize AIP_CRC to null

(c) Insert new entry into PROC_DAT table

(i) Insert CASID

(ii) Insert ASID

(iii) Insert JOB_SEQ from input argument

(iv) Insert TAPE_SPEC from input argument

(v) Insert SRC_PNAME from input argument

(vi) Insert SRC_FNAME from input argument

(vii) Insert SCIENCE_PATH from input argument

(viii) Insert SCIENCE_FILE from input argument

(ix) Insert AIP_NAME

(x) Initialize TAPE_FLAG from input argument

(xi) Initialize SPLIT_FLAG from input argument

(xii) Initialize MIG_STAT with -1 = not migrated yet

(xiii) Initialize TAR_STAT with -1 = not tar'd yet

(xiv) Initialize TAPE_STAT with -1 = not copied to tape yet

(xv) Initialize SPLIT_STAT with -1 = not split yet

(xvi) Initialize CLEANUP_STAT with -1 = not cleaned up yet

(xvii) Initialize BIN_ASC_FLAG from input argument

(xviii) Initialize PROP_FLAG from input argument

(xix) Insert NSSDC_COLLID from input argument

(xx) Insert FORMAT_ID from input argument

(xxi) Insert PROJ_ID from input argument

(xxii) Insert ORD_APPL_ENCOD from input argument

(xxiii) Insert ENTRY_ID from input argument

(xxiv) Insert SUP_ENT_ID from input argument

(xxv) Insert DATATYPE from input argument

(xxvi) Insert ID_ENCOD_FMT from input argument

(xxvii) Insert DATA_START from input argument

(xxviii) Insert DATA_STOP from input argument

(xxix) Insert AIP_PATH from input argument

(xxx) Insert ATTR_PATH by concatenating "/attrib" to SCIENCE_PATH

(xxxi) Insert ATTR_NAME by appending “_att” to SCIENCE_FILE input argument

(d) Return CASID in the second argument
(e) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – insCasid

(b) Description – inserts a new CASID record into the database for NSSDC provided data

(c) Inputs

(i) ArchiveEntryProcessData procData – the container of the relevant information from a given row of the DIOnAS list file

(ii) String stagingDirectory – the directory where the consequent AIP is to be placed

(d) Outputs

(i) int p_casid – the CASID for a given ArchiveEntryProcessData input object

(ii) Exception IOException – if there was a problem with manipulating a file

(iii) Exception ParseException – if there was a problem with parsing the data start and stop times

(iv) Exception SQLException – if there was a problem with using the database
C) dbm_ins_EXT_casid

1) Description: Insert new common archive storage ID record into the database for AIPs received from external data providers.

2) Arguments:

	Field #
	Name
	I/O
	JDBC Type
	IF Spec

	1
	p_job_seq
	I
	INTEGER
	returned by DBM_INS_JOB

	2
	p_casid
	O
	INTEGER
	PK of CASID table

	3
	p_ASID
	I
	STRING
	E-IM-02

	4
	p_science_file
	I
	STRING
	E-IM-02

	5
	p_nssdc_collid
	I
	STRING
	E-IM-02

	6
	p_format_id
	I
	STRING
	E-IM-02

	7
	p_ord_appl_encod
	I
	STRING
	E-IM-02

	8
	p_id_encod_fmt
	I
	STRING
	E-IM-02

	9
	p_proj_id
	I
	STRING
	E-IM-02

	10
	p_datatype
	I
	STRING
	E-IM-02

	11
	p_entry_id
	I
	STRING
	E-IM-02

	12
	p_sup_ent_id
	I
	STRING
	E-IM-02

	13
	p_data_start
	I
	DATE/TIME
	E-IM-02

	14
	p_data_stop
	I
	DATE/TIME
	E-IM-02

	15
	P_AIP_SIZE
	I
	INTEGER
	E-IM-02

	16
	P_AIP_CRC
	I
	INTEGER
	E-IM-02

	17
	P_AIP_PATH
	I
	STRING
	

3) Processing / Algorithms

(a) Receive from DIOnAS Server request to add AIP information from DIOnAS list file
(b) Select the appropriate entry for thie AIP from table PROC_PARAM where:

(i) PROC_PARAM.NSSDC_COLLID matches input argument

(ii) and PROC_PARAM.format_id matches input argument

(iii) and PROC_PARAM.ord_appl_encod matches input argument

(iv) and PROC_PARAM.id_encod_fmt matches input argument

(v)
(c) Use the identifying number from field PROC_PARAM.F_ID to select the appropriate function in table SCI_PATH_FUNCTION.
(d) Construct the value for SCIENCE_PATH (destination nssdcftp directory for the AIP’s canonical science file) by running the function identified in SCI_PATH_FUNCTION.F_NAME, passing parameters specified in SCI_PATH_FUNCTION.PARAMETERS.
(e) Insert new entry into CASID table

(i) Create new CASID with unique number

(ii) Insert JOB_SEQ from input argument

(iii) Insert SCIENCE_FILE from input argument

(iv) Insert NSSDC_COLLID from input argument

(v) Insert PROP_FLAG from input argument

(vi) Insert DATE_START from input argument

(vii) Insert DATE_STOP from input argument

(viii) Insert AIP_NAME by parsing input argument 17 to obtain file specification
(ix) Insert AIP_SIZE from input argument

(x) Insert AIP_CRC from input argument

(f) Insert new entry into PROC_DAT table

(i) Insert CASID

(ii) Insert ASID

(iii) Insert JOB_SEQ from input argument

(iv) Insert TAPE_SPEC from PROC_PARAM.TAPE_SPEC

(v) Insert SRC_PNAME using value "N/A"

(vi) Insert SRC_FNAME using value "N/A"

(vii) Insert SCIENCE_PATH from value returned by the science path function.
(viii) Insert SCIENCE_FILE from input argument

(ix) Insert AIP_NAME

(x) Initialize TAPE_FLAG from PROC_PARAM.TAPE_FLAG

(xi) Initialize SPLIT_FLAG from PROC_PARAM.SPLIT_FLAG

(xii) Initialize MIG_STAT with 0 = migrated

(xiii) Initialize TAR_STAT with -1 = not tar'd yet

(xiv) Initialize TAPE_STAT with -1 = not copied to tape yet

(xv) Initialize SPLIT_STAT with -1 = not split yet

(xvi) Initialize CLEANUP_STAT with -1 = not cleaned up yet

(xvii) Initialize BIN_ASC_FLAG from PROC_PARAM.BIN_ASC_FLAG

(xviii) Initialize PROP_FLAG from PROC_PARAM.PR0P_FLAG

(xix) Insert NSSDC_COLLID from input argument

(xx) Insert FORMAT_ID from input argument

(xxi) Insert PROJ_ID from input argument

(xxii) Insert ORD_APPL_ENCOD from input argument

(xxiii) Insert ENTRY_ID from input argument

(xxiv) Insert SUP_ENT_ID from input argument

(xxv) Insert DATATYPE from input argument

(xxvi) Insert ID_ENCOD_FMT from input argument

(xxvii) Insert DATA_START from input argument

(xxviii) Insert DATA_STOP from input argument

(xxix) Insert AIP_PATH from input argument

(xxx) Insert ATTR_PATH by concatenating "/attrib" to SCIENCE_PATH

(xxxi) Insert ATTR_NAME by appending “_att” to SCIENCE_FILE input argument

(g) Return CASID in the second argument
(h) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – insextCasid

(b) Description – inserts a new CASID record into the database for data from external providers.

(c) Inputs

(i) ArchiveEntryProcessData procData – the container of the relevant information from a given row of the DIOnAS list file

(ii) String stagingDirectory – the directory where the consequent AIP is to be placed

(d) Outputs

(i) int p_casid – the CASID for a given ArchiveEntryProcessData input object

(ii) Exception IOException – if there was a problem with manipulating a file

(iii) Exception ParseException – if there was a problem with parsing the data start and stop times

(iv) Exception SQLException – if there was a problem with using the database
D) DBM_SEL_MIG_LIST

1) Description: Select outstanding migration requests and construct the Migrator list file.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Job Number
	I
	INTEGER
	returned by DBM_INS_JOB

	2
	Result Set = Pointer to the set of records that were requested. All data comes from the PROC_DAT table. Record structure is indicated below.
	NA
	ADDRESS
	See below

	2.1
	SRC_PNAME
	O
	STRING
	See DBM-M-01

	2.2
	SRC_FNAME
	O
	STRING
	See DBM-M-01

	2.3
	AIP_PATH
	O
	STRING
	See DBM-M-01

	2.4
	AIP_NAME
	O
	STRING
	See DBM-M-01

	2.5
	CASID
	O
	INTEGER
	Convert to ASCII for DBM-M-01

	2.6
	ASID
	O
	STRING
	See DBM-M-01

	2.7
	NSSDC_COLLID
	O
	STRING
	See DBM-M-01

	2.8
	FORMAT_ID
	O
	STRING
	See DBM-M-01

	2.9
	ID_ENCOD_FMT
	O
	STRING
	See DBM-M-01

	2.10
	ORD_APPL_ENCOD
	O
	STRING
	See DBM-M-01

	2.11
	PROJ_ID
	O
	STRING
	See DBM-M-01

	2.12
	DATATYPE
	O
	STRING
	See DBM-M-01

	2.13
	ENTRY_ID
	O
	STRING
	See DBM-M-01

	2.14
	SUP_ENT_ID
	O
	STRING
	See DBM-M-01

	2.15
	SCIENCE_FILE
	O
	STRING
	See DBM-M-01

	2.16
	BIN_ASC_FLAG
	O
	STRING
	See DBM-M-01

	2.17
	DATA_START
	O
	DATE/TIME
	Convert to ASCII for DBM-M-01

	2.18
	DATA_END
	O
	DATE/TIME
	Convert to ASCII for DBM-M-01

	3
	Number of Rows Returned*
	O
	INTEGER
	NA

3) Processing / Algorithms

(a) Receive from DIOnAS Server request to select outstanding migration requests

(b) Select all CASIDs from current job that have not completed Migrator processing, i.e., MIG_STAT is not = 0

(c) Return result set (i.e., from zero to multiple records) as specified in field 2 above. NOTE: The following special processing must be done by the JAVA interface code before sending the data to the Migrator List File
(i) SRC_PNAME and SRC_FNAME must be concatenated

(ii) AIP_PATH and AIP_NAME must be concatenated

(iii) DATA_START must be converted from DATA/TIME to an ASCII STRING
(iv) DATA_END must be converted from DATA/TIME to an ASCII STRING
(d) *Return Number of Rows Returned in the third argument (This value is returned only from the JAVA interface code to the IM Job Migrator Application code)

(e) Oracle returns an exception if there was an error.
4) Database API Method

(a) Name – selMigList

(b) Description – constructs a ‘migrator’ list file that is based on the outstanding migration requests for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(ii) String listFilePathname – the pathname of the ‘migrator’ list file to be created

(d) Outputs

(i) int rowCount – the number of rows in the result set returned by this stored procedure

(ii) Exception IOException – if there was a problem with manipulating the ‘migrator’ list file

(iii) Exception SQLException – if there was a problem with using the database

(iv) file migratorListFile – the output file to be given as input to the ‘migrator’. See DIOnAS Interface Definition DBM-M-01.

E) DBM_UPD_MIG_STAT

1) Description: Update Migrator processing status.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	CASID
	I
	INTEGER
	See M-IM-02

	2
	PROC_CODE
	I
	INTEGER
	See M-IM-02

	3
	AIP_size
	I
	INTEGER
	See M-IM-02

	4
	AIP_crc
	I
	INTEGER
	See M-IM-02

	5
	Num_Rows_Updated
	Return
	INTEGER
	NA

3) Processing / Algorithms

(a))Receive request from DIOnAS Server to update Migrator processor status, AIP size, and AIP CRC

(b) Update matching records in PROC_DAT and CASID tables based on CASID (which must first be converted from a string to an integer) by doing the following:

(i) CASID table updates

(1) Update AIP_SIZE from input argument

(2) Update AIP_CRC from input argument

(3) Update QUAL_STATE = 0

(ii) PROC_DAT table updates

(1) Update MIG_STAT using PROC_CODE input argument

(c) Return to the DIOnAS Server the number of records successfully updated (i.e., this should always be one if we update one file record at a time.)

4) Database API Method

(a) Name – updMigStat

(b) Description – updates the migration status field of the database for a given CASID

(c) Inputs

(i) int casid – the common archive storage ID

(ii) int procCode – the processing code

(iii) long aipSize – the size of the AIP

(iv) long aipCRC – the CRC of the AIP

(d) Outputs

(i) int rowsChanged – the value returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database
F) DBM_SEL_TAR_LIST

1) Description: Select CASIDs flagged to be recorded in a tar file. Return a result set that will be used to create tar list file.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Job Number
	I
	INTEGER
	returned by DBM_INS_JOB

	2
	Result Set = Pointer to the set of records that were requested. All data comes from the PROC_DAT table. Record structure is indicated below. Note: When JAVA code receives the result set, if will have to concatenate fields 2.2 and 2.3.
	NA
	ADDRESS
	See below

	2.1
	CASID
	O
	INTEGER
	See DBM-M-01

	2.2
	AIP_PATH
	O
	STRING
	See DBM-M-01

	2.3
	AIP_NAME
	O
	STRING
	See DBM-M-01

	3
	Number of Rows Returned*
	O
	INTEGER
	NA

3) Processing / Algorithms

(a) Receive request from the DIOnAS Server to select tar requests from current job

(b) If all CASIDs from this job have completed Migrator processing (i.e., MIG_STAT = 0)

Then

Select all CASIDs from this job that are to be copied to tape (i.e., TAPE_FLAG = Y)

Endif

(c) Return result set (i.e., from zero to multiple records) as specified in field 2 above. AIP_PATH and AIP_NAME must be concatenated, and a "/" placed between them to create a valid path + name for the AIP file.
(d) *Return Number of Rows Returned in the third argument (This value is returned only from the JAVA interface code to the IM Job Migrator Application code)

(e) Oracle returns an exception if there was an error.
4) Database API Method

a) Name – selTarList
b) Description – constructs a ‘tar’ list file that is based on the outstanding ‘tar’ requests for a given job
c) Inputs
i) int JobSequence – the unique, system-assigned identifier for a job

ii) String listFilePathname – the pathname of the ‘tar’ list file to be created
d) Outputs

(i) int rowCount – the number of rows in the result set returned by this stored procedure

(ii) Exception IOException – if there was a problem with manipulating the ‘tar’ list file
(iii) Exception SQLException – if there was a problem with using the database
(iv) file listFile – the output file to be used as input by the IMTapeCopy unit. See DIOnAS Interface Definition DBM-IM-01.
G) DBM_UPD_TAR_STAT

1) Description: Update tar status for each AIP that was appended to the job tar file

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	CASID
	I
	INTEGER
	See M-IM-02

	2
	PROC_CODE
	I
	INTEGER
	See M-IM-02

	3
	Num_Rows_Updated
	Return
	INTEGER
	NA

1) Processing / Algorithms

(a) Receive request from DIOnAS Server to update tar status

(b) Update tape copy status in PROC_DAT table based on the CASID for the AIP by doing the following:

(i) Update TAR_STAT using PROC_CODE input argument

(c) Return to the DIOnAS Server the number of records successfully updated (i.e., this should always be one if we update one file record at a time.)

(d) Oracle returns an exception if there was an error.
2) Database API Method

(a) Name – updTarStat

(b) Description – updates the ‘tar’ status field of the database for a given CASID

(c) Inputs

(i) int casid – the common archive storage ID

(ii) String procCode – the processing code

(d) Outputs

(i) int rowsUpdated – the value returned by this stored procedure

(ii) Exception NumberFormatException – if there was a problem with manipulating the processing code

(iii) Exception SQLException – if there was a problem with using the database

H) DBM_SEL_NOT_TARD

1) Description: Get the number of CASIDs for this job that have not yet been tar'd

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB
	I
	INTEGER
	

	2
	NUM_AIPs_NOT_TARD
	O
	INTEGER
	

3) Processing / Algorithms
(a) Receive request from DIOnAS Server to identify AIPs not copied/appended to a tar file.

(b) For this job, for each CASID in the PROC_DAT table that was supposed to be copied to tape (i.e., TAPE_FLAG = Y)

(i) Find whether it has been not tar'd (i.e., TAR_STAT is not = 0)

(ii) Sum the instances where the AIP has not yet been tar'd

(c) Return to the DIOnAS Server the number of AIPs that have not been tar'd

(d) Oracle returns an exception if there was an error.
4) Database API Method

(a) Name – selNotTard

(b) Description – gets the number of CASIDs, for a given job, that have not been “tarred”

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(d) Outputs

(i) int rowCount – the value returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database
I) DBM_SEL_TAPE_LIST

1) Description: Get the DLT specification for this job to which the tar file is to be copied.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB
	I
	INTEGER
	

	2
	TAPE_SPEC
	O
	STRING
	

3) Processing / Algorithms
(a) Receive request from DIOnAS Server to identify DLT name.

(b) For this job, for ANY CASID in the PROC_DAT table that was supposed to be copied to tape (i.e., TAPE_FLAG = Y)

(i) Get the name of the DLT to which it was to be copied (i.e., TAPE_SPEC). All TAPE_SPECs for a job are the same!

(e) Return to the DIOnAS Server the DLT_SPEC

(f) Oracle returns an exception if there was an error.
4) Database API Method

(a) Name – selTapeList

(b) Description – gets the specification of the tape to which a given job has been assigned

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(d) Outputs

(i) String tapeSpecification – the value returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database
J) DBM_UPD_TAPE_STAT

1) Description: Update tape copy status after attempt to copy a tar file to DLT

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB
	I
	INTEGER
	

	2
	PROC_CODE
	I
	INTEGER
	

	3
	Num_Rows_Updated
	Return
	INTEGER
	NA

3) Processing / Algorithms

(a) Receive request from DIOnAS Server to update tape copy status

(b) For every CASID associated with a given job number with TAPE_FLAG = Y, update TAPE_STAT in the PROC_DAT table using PROC_CODE input argument

(c) If PROC_CODE = 0 (successful tape copy) then

(i) Insert into DLT table one record for every CASID associated with the job number with TAPE_FLAG = Y

(d) Return to the DIOnAS Server the number of records successfully updated

4) Database API Method

(a) Name – updTapeStat

(b) Description – updates the IMTapeCopy status field of the database for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(ii) String procCode – the processing code

(d) Outputs

(i) int rowsUpdated – the value returned by this stored procedure

(ii) Exception NumberFormatException – if there was a problem with manipulating the processing code

(iii) Exception SQLException – if there was a problem with using the database

K) DBM_UPD_BACKUP_STAT

1) Description: Update tape backup status after attempt to copy a tar file to backup DLT

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB
	I
	INTEGER
	

	2
	PROC_CODE
	I
	INTEGER
	

	3
	Num_Rows_Updated
	Return
	INTEGER
	NA

3) Processing / Algorithms

(d) Receive request from DIOnAS Server to update tape backup status

(e) For every CASID associated with a given job number with TAPE_FLAG = Y, update BACKUP_STAT in the PROC_DAT table using PROC_CODE input argument

(f) If PROC_CODE = 0 (successful tape backup) then

(i) Insert into DLT table one record for every CASID associated with the job number with BACKUP_FLAG = Y

(e) Return to the DIOnAS Server the number of records successfully updated

4) Database API Method

(a) Name – updBackupStat

(b) Description – updates the Tapebackup status field of the database for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(ii) String procCode – the processing code

(d) Outputs

(i) int rowsUpdated – the value returned by this stored procedure

(ii) Exception NumberFormatException – if there was a problem with manipulating the processing code

(iii) Exception SQLException – if there was a problem with using the database

L) DBM_SEL_SPLIT_DIR

1) Description: Select unique RAID directories for this job and construct a command file to create those directories.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Job Number
	I
	INTEGER
	returned by DBM_INS_JOB

	2
	Result Set = Pointer to the set of records that were requested. All data comes from the PROC_DAT table. Record structure is indicated below.
	NA
	ADDRESS
	See below

	2.1
	SCIENCE_PATH
	O
	STRING
	See DBM-M-02

	3
	Number of Rows Returned*
	O
	INTEGER
	NA

3) Processing / Algorithms

(a) Receive from DIOnAS Server request to identify destination directories of the Splitter requests for current job

(b) Select all CASIDs from current job that have

(i) completed Migration processing, i.e., MIG_STAT = 0

(ii) are to be written to RAID, i.e., SPLIT_FLAG = Y

(iii) have not yet been written to RAID, i.e., SPLIT_STAT is not = 0

(c) Return result set (i.e., from zero to multiple records) as specified in field 2 above. NOTE: The following special processing must be done by the JAVA interface code: Create a "Create RAID Directories Command File" as specified in interface DBM-DVM-02 by concatenating the following fields for each record:
(i) Text string "mkdir "
(ii) SCIENCE_PATH.
(d) *Return Number of Rows Returned in the third argument (This value is returned only from the JAVA interface code to the IM Job Splitter Application code)

(e) Oracle returns an exception if there was an error.
4) Database API Method

(a) Name – selSplitDir

(b) Description – creates directories based on the science file paths for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(d) Outputs

(i) int rowCount – the number of rows in the result set returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database

M) DBM_SEL_SPLIT_LIST

1) Description: Select outstanding splitter requests and construct the Splitter list file.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Job Number
	I
	INTEGER
	returned by DBM_INS_JOB

	2
	Result Set = Pointer to the set of records that were requested. All data comes from the PROC_DAT table. Record structure is indicated below.
	NA
	ADDRESS
	See below

	2.1
	AIP_PATH
	O
	STRING
	See DBM-S-01

	2.2
	AIP_NAME
	O
	STRING
	See DBM-S-01

	2.3
	SCIENCE_PATH
	O
	STRING
	See DBM-S-01

	2.4
	SCIENCE_FILE
	O
	STRING
	See DBM-S-01

	2.5
	ATTR_PATH
	O
	STRING
	See DBM-S-01

	2.6
	ATTR_FILE
	O
	STRING
	See DBM-S-01

	2.7
	CASID
	O
	INTEGER
	Convert to ASCII for DBM-S-01

	2.8
	ASID
	O
	STRING
	See DBM-S-01

3) Processing / Algorithms

(a) Receive from DIOnAS Server request to select outstanding splitter requests

(b) Select all CASIDs from current job that have

(i) completed Migration processing, i.e., MIG_STAT = 0

(ii) are to be written to RAID, i.e., SPLIT_FLAG = Y

(iii) have not yet been written to RAID, i.e., SPLIT_STAT is not = 0

(c) Return result set (i.e., from zero to multiple records) as specified in field 2 above. NOTE: The following special processing must be done by the JAVA interface code before sending the data to the Splitter List File
(i) AIP_PATH and AIP_NAME must be concatenated to provide field 1 of the list file

(ii) SCIENCE_PATH and SCIENCE_FILE must be concatenated to provide field 2 of the list file

(iii) To provide field 3 of the list file:

(1) "/attrib" must be concatenated to SCIENCE_PATH

(2) The extension for SCIENCE_FILE must be changed to ".att"

(3) The resulting attribute path and file name must be concatenated

(iv) CASID must be converted from INTEGER to an ASCII STRING to provide field 4 of the list file.
(f) Oracle returns an exception if there was an error.
4) Database API Method

(a) Name – selSplitList

(b) Description – constructs a ‘splitter’ list file that is based on the outstanding split requests for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(ii) String listFilePathname – the pathname of the ‘splitter’ list file to be created

(d) Outputs

(i) int rowCount – the number of rows in the result set returned by this stored procedure

(ii) Exception IOException – if there was a problem with manipulating the ‘splitter’ list file

(iii) Exception SQLException – if there was a problem with using the database

(iv) file splitterListFile – the output file to be given as input to the ‘splitter’. See DIOnAS Interface Definition DBM-S-01.

N) DBM_UPD_SPLIT_STAT

1) Description: Update Splitter processing status.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	CASID
	I
	INTEGER
	See M-IM-02

	2
	PROC_CODE
	I
	INTEGER
	See M-IM-02

	3
	Num_Rows_Updated
	Return
	INTEGER
	NA

3) Processing / Algorithms
(a) Receive request from DIOnAS Server to update Splitter processor status

(b) Update matching records in PROC_DAT and RAID_FILES tables based on CASID (which must first be converted from a string to an integer) by doing the following:

(i) Concatenate PROC_DAT.SCIENCE_PATH and PROC_DAT.SCIENCE_FILE

(ii) Select a matching concatenation of RAID_FILES.SCIENCE_PATH and RAID_FILES.SCIENCE_FILE

(iii) If no matching concatenation is found (i.e., first delivery of this science file)

(iv) Then

(1) PROC_DAT table updates

a. Update SPLIT_STAT using PROC_CODE input argument

(2) RAID_FILES table updates based association of CASID value with other existing field values in PROC_DAT table

a. Insert new record in RAID_FILES table

b. Set RAID_FILES(new).CASID to CASID in input argument

c. Set RAID_FILES(new).SCIENCE_PATH to PROC_DAT(CASID).SCIENCE PATH

d. Set RAID_FILES(new).SCIENCE_FILE to PROC_DAT(CASID).SCIENCE FILE

e. Set RAID_FILES(new).ATTR_PATH to PROC_DAT(CASID).ATTR PATH

f. Set RAID_FILES(new).ATTR_FILE to PROC_DAT(CASID).ATTR FILE

(v) Else

(1) PROC_DAT table updates

a. Update SPLIT_STAT using PROC_CODE input argument

(2) Modification of selected record in RAID_FILES table to indicate redelivery of a science file to the raid disk

a. Modify RAID_FILES.CASID using new CASID value

(vi) Endif

(c) Return to the DIOnAS Server the number of records successfully updated (i.e., this should always be one if we update one file record at a time.)

4) Database API Method

(a) Name – updSplitStat

(b) Description – updates the split status field of the database for a given CASID

(c) Inputs

(i) int casid – the common archive storage ID

(ii) int procCode – the processing code

(d) Outputs

(i) int rowsChanged – the value returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database
O) DBM_SEL_CLEAN_LIST

1) Description: Select and list AIPs from the current job that have completed all required processing.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Job Number
	I
	INTEGER
	returned by DBM_INS_JOB

	2
	Result Set = Pointer to the set of records that were requested. All data comes from the PROC_DAT table. Record structure is indicated below.
	NA
	ADDRESS
	See below

	2.1
	CASID
	O
	INTEGER
	

	2.2
	AIP_PATH
	O
	STRING
	See DBM-M-02

	2.3
	AIP_NAME
	O
	STRING
	See DBM-M-02

	3
	Number of Rows Returned*
	O
	INTEGER
	NA

3) Processing / Algorithms

(a) Receive request from DIOnAS Server to select AIPs that have completed all requested processing

(b) Select all CASIDs from current job that have

(i) completed Migration processing, i.e., MIG_STAT = 0

(ii) have (completed tape copying, i.e., TAPE_STAT = 0 and completed the backup tape, i.e., BACKUP_STAT = 0) OR (were not flagged to be written to tape, i.e., TAPE_FLAG = N)

(iii) have (completed Splitter processing, i.e., SPLIT_STAT = 0) OR (were not flagged to be written to RAID, i.e., SPLIT_FLAG = N)

(iv) have not already been cleaned up, i.e., CLEAN_STAT is not = 0
(c) Return result set (i.e., from zero to multiple records) as specified in field 2 above. NOTE: The following special processing must be done by the JAVA interface code: Create a "Cleanup AIPs Command File" as specified in interface DBM-DVM-03 by concatenating the following fields for each record:
(i) Text string "rm "
(ii) AIP_PATH
(iii) AIP_NAME

(d) *Return Number of Rows Returned in the third argument (This value is returned only from the JAVA interface code to the IM Job Cleanup Application code)

(e) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – selCleanList

(b) Description – constructs a Vector object that is based on the outstanding IMCleanup requests for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(d) Outputs

(i) Vector CleanListVector – the list of CleanList(CASID + AIP info) objects for a given job

(ii) Exception SQLException – if there was a problem with using the database
P) DBM_UPD_CLEAN_STAT

1) Description: Update AIP cleanup status of CASIDs.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	CASID
	I
	INTEGER
	

	2
	PROC_CODE
	I
	INTEGER
	See M-IM-02

	3
	Num_Rows_Updated
	Return
	INTEGER
	NA

3) Processing / Algorithms

(a) Receive request from DIOnAS Server to update AIP cleanup status
(b) Update cleanup status in PROC_DAT table based on CASID doing the following:

(i) Update CLEAN_STAT using PROC_CODE input argument

(c) Return to the DIOnAS Server the number of records successfully updated (i.e., this should always be one if we update one file record at a time.)

4) Database API Method

(a) Description – updates the cleanup status field of the database for a given CASID

(b) Inputs

(i) int casid – the common archive storage ID

(ii) String procCode – the processing code

(c) Outputs

(i) int rowsUpdated – the value returned by this stored procedure

(ii) Exception NumberFormatException – if there was a problem with manipulating the processing code

(iii) Exception SQLException – if there was a problem with using the database
Q) DBM_SEL_UNCLEAN_LIST

1) Description: Select the AIPs from the current job that have not been cleanup up.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Job Number
	I
	INTEGER
	

	2
	Unclean Number = Number of CASIDs for this job, for which CLEAN_STAT is not = 0
	O
	INTEGER
	

3) Processing / Algorithms

(a) Receive request from DIOnAS Server to select number of AIPs that have not completed AIP cleanup

(b) Return result
(c) Oracle returns an exception if there was an error
4)
Database API method
(a) Name – selUncleanList

(b) Description – gets the number of noncleanable CASIDs for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(d) Outputs

(i) int rowCount – the value returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database
R) DBM_FLUSH_PROC_JOB

1) Description: Flush PROC_DAT and JOB_STAT table records for the current job from the database.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Job Number
	I
	INTEGER
	

	2
	Num_Jobs_Flushed
	Return
	INTEGER
	NA

3) Processing / Algorithms
(a) Receive request from the DIOnAS Server to delete the PROC_DAT and the JOB_STAT table records for the current job.

(b) Delete them.

(c) Update Job_End in Job table with current date/time.

(d) Oracle returns an exception if there was an error

4) Database API Method

(a) Name – flushProcJob

(b) Description – deletes records for a given job from the database

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(d) Outputs

(i) int status – the number of jobs that have been flushed

(ii)
Exception SQLException – if there was a problem with using the database
S) DBM_SEL_JOB_MON_DAT

1) Description: Select data needed to update the Job Monitoring information on the user interface.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Result Set = Pointer to the set of records that were requested. One record is returned for each job that is not complete, i.e., for each record in the JOB_STAT table. Data from the JOB and PROC_DAT tables are selected based on the JOB_SEQ value in field 1.1.
	NA
	ADDRESS
	See below

	1.1
	JOB.JOB_SEQ
	O
	INTEGER
	Number

	1.2
	JOB.LIST_FILE
	O
	STRING
	File name

	1.3
	JOB_STAT.JOB_PHASE
	O
	INTEGER
	Phase number

	1.4
	JOB_STAT.PHASE_START
	O
	DATE
	Date & Time

	1.5
	JOB_STAT.JOB_ERROR
	O
	INTEGER
	Number

	1.6
	MIG_Queued
	O
	INTEGER
	# CASIDS for JOB_SEQ

	1.7
	MIG_Processed
	O
	INTEGER
	# CASIDS for JOB_SEQ with MIG_STAT=0

	1.8
	TC_Queued
	O
	INTEGER
	# CASIDS for JOB_SEQ with TAPE_FLAG set

	1.9
	TC_Tarred
	O
	INTEGER
	# CASIDS for JOB_SEQ with TAR_STAT=0

	1.10 1
	JOB_STAT.TAPE_STAT
	O
	INTEGER
	Number

	1.11 1
	RAID_Queued
	O
	INTEGER
	# CASIDS for JOB_SEQ with SPLIT_FLAG set

	1.12 1
	RAID_Processed
	O
	INTEGER
	# CASIDS for JOB_SEQ with SPLIT_STAT=0

	1.13 3
	CLEAN_Queued
	O
	INTEGER
	# CASIDS for JOB_SEQ

	1.14 1
	CLEAN_Processed
	O
	INTEGER
	# CASIDS for JOB_SEQ with CLEAN_STAT=0

3) Processing / Algorithms

(a) When the result set is received by the JAVA interface code, it will populate a vector of objects that is returned to the JAVA application.

(b) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – selJobMonDat

(b) Description – returns job monitoring data for all active jobs to the application

(c) Inputs - none

(d) Outputs

(i) Vector jobMonDatVector – the list of job monitoring data Objects for all active jobs

(ii) Exception SQLException – if there was a problem with using the database

T) DBM_SEL_TAPE_RPT_DAT

1) Description: Select data needed to produce the Tape Report file.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB_SEQ
	I
	INTEGER
	

	2
	Result Set = Pointer to the set of records that were requested. One record is returned for each file that was tarred, i.e., for each record in the DLT table with the correct TAPE_SPEC.
	NA
	ADDRESS
	See below

	2.1
	JOB.JOB_SEQ
	O
	INTEGER
	Number

	2.2
	JOB.FILE_INDEX
	O
	INTEGER
	Number

	2.3
	CASID.CASID
	O
	STRING
	

	2.4
	CASID.AIP_SIZE
	O
	INTEGER
	Number

	2.5
	CASID.AIP_NAME
	O
	STRING
	

	3.0
	Number of Rows Returned*
	O
	INTEGER
	NA

3) Processing / Algorithms

(a) *Return Number of Rows Returned in the seventh argument (This value is returned only from the JAVA interface code to the IM Client Application code)

(b) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – selTapeRptDat

(b) Description – constructs a tape summary report file for a given tape specification

(c) Inputs

(i) String tapeSpecification – the operator-assigned name for a tape

(ii) String tapeReportPathname – the pathname of the tape summary report file to be created

(d) Outputs

(i) int rowCount – the number of rows in the result set returned by this stored procedure

(ii) Exception IOException – if there was a problem with manipulating the tape summary report file

(iii) Exception SQLException – if there was a problem with using the database

(iv) file tapeReportFile – the tape summary report file

U) DBM_SEL_INC_JOB_JDAT

1) Description: Select data needed to produce the Incomplete Job Report. Master component – used in conjunction with SEL_INC_JOB_PDAT

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB_SEQ
	I
	INTEGER
	

	2
	Result Set = Pointer to the set of records requested. One record will be returned for the Job matching the JOB_SEQ parameter.
	NA
	ADDRESS
	See below

	2.1
	JOB.LIST_FILE
	O
	STRING
	File name

	2.2
	JOB_STAT.JOB_PHASE
	O
	INTEGER
	Phase code

	2.3
	JOB_STAT.PHASE_START
	O
	DATE
	Date & Time

	2.4
	JOB_STAT.JOB_ERROR
	O
	INTEGER
	Number

	2.5
	MIG_Queued
	O
	INTEGER
	#CASIDS for JOB_SEQ

	2.6
	MIG_Processed
	O
	INTEGER
	#CASIDS for JOB_SEQ with MIG_STAT=0

	2.7
	TC_Queued
	O
	INTEGER
	#CASIDS for JOB_SEQ with TAPE_FLAG set

	2.8
	TC_Tarred
	O
	INTEGER
	#CASIDS for JOB_SEQ with TAR_STAT=0

	2.9
	TC_TAPED
	O
	INTEGER
	#CASIDS for JOB_SEQ with TAPE_STAT=0

	2.10
	RAID_QUEUED
	O
	INTEGER
	#CASIDS for JOB_SEQ with SPLIT_FLAG set

	2.11
	RAID_PROCESSED
	O
	INTEGER
	#CASIDS for JOB_SEQ with SPLIT_STAT=0

	2.12
	CLEAN_QUEUED
	O
	INTEGER
	#CASIDS for JOB_SEQ

	2.13
	CLEAN_PROCESSED
	O
	INTEGER
	#CASIDS for JOB_SEQ with CLEAN_STAT=0

	2.14
	Number of Rows Returned*
	O
	INTEGER
	NA

3) Processing / Algorithms

(a) *Return Number of Rows Returned in the sixth argument (This value is returned only from the JAVA interface code to the IM Client Application code)

(b) If job has completed no rows are returned.
(c) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – selIncJobPdat

(b) Description – constructs the body of an incomplete job report file for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(ii) PrintWriter incJobReportFile – the incomplete job report file object

(d) Outputs

(i) int rowCount – the number of rows in the result set returned by this stored procedure

(ii) Exception IOException – if there was a problem with manipulating the incomplete job report file
(ii) Exception SQLException – if there was a problem with using the database
(iii) file incJobReportFile – the incomplete job report file

V) DBM_SEL_INC_JOB_PDAT
1) Description: Select data needed to produce the Incomplete Job Report. Detail component – used in conjunction with SEL_INC_JOB_JDAT

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB_SEQ
	I
	INTEGER
	

	2
	Result Set = Pointer to the set of records requested. One record will be returned for each CASID associated with the JOB_SEQ that has not been completely processed, i.e. cleanup_stat <> 0
	NA
	ADDRESS
	See below

	2.1
	PROC_DAT.ASID
	O
	INTEGER
	Number

	2.2
	PRO_DAT.NSSDC_COLLID
	O
	STRING
	File name

	2.3
	PROC_DAT.SRC_PNAME
	O
	STRING
	

	2.4
	PROC_DAT.SRC_FNAME
	O
	STRING
	

	2.5
	PROC_DAT.SCIENCE_PATH
	O
	STRING
	

	2.6
	PROC_DAT.SCIENCE_FILE
	O
	STRING
	

	2.7
	PROC_DAT.SPLIT_FLAG
	O
	STRING
	

	2.8
	PROC_DAT.TAPE_FLAG
	O
	STRING
	

	2.9
	PROC_DAT.TAPE_SPEC
	O
	STRING
	

	2.10
	PROC_DAT.MIG_STAT
	O
	INTEGER
	Number

	2.11
	PROC_DAT.TAR_STAT
	O
	INTEGER
	Number

	2.12
	PROC_DAT.TAPE_STAT
	O
	INTEGER
	Number

	2.13
	PROC_DAT.SPLIT_STAT
	O
	INTEGER
	Number

	2.14
	PROC_DAT.CLEANUP_STAT
	O
	INTEGER
	Number

	2.15
	PROC_DAT.FORMAT_ID
	O
	STRING
	

	2.16
	PROC_DAT.ORD_APPL_ENCOD
	O
	STRING
	

	2.17
	PROC_DAT.ID_ENCOD_FMT
	O
	STRING
	

	2.18
	PROC_DAT.PROJ_ID
	O
	STRING
	

	2.19
	PROC_DAT.DATATYPE
	O
	STRING
	

	2.20
	PROC_DAT.ENTRY_ID
	O
	STRING
	

	2.21
	PROC_DAT.SUP_ENT_ID
	O
	STRING
	

	2.22
	PROC_DAT.PROP_FLAG
	O
	STRING
	

	2.23
	PROC_DAT.DATA_START
	O
	DATE
	

	2.24
	PROC_DAT.DATA_STOP
	O
	DATE
	

	2.25
	PROC_DAT.AIP_SIZE
	O
	INTEGER
	

	2.26
	PROC_DAT.AIP_CRC
	O
	INTEGER
	

	2.27
	Number of Rows Returned*
	O
	INTEGER
	NA

3) Processing/Algorithms

(a) *Return Number of Rows Returned in the eighteenth argument (This value is returned only from the JAVA interface code to the IM Client Application code)

(c) Oracle returns an exception if ther was an error

4) Database API Method
(a) Name – selIncJobJdat
(b) Description – constructs the header of an incomplete job report file for a given job
(c) Inputs
(i) int jobSequence – the unique, system-assigned identifier for a job
(ii) PrintWriter incJobReportFile – the incomplete job report file object
(d) Outputs
(i) int rowCount – the number of rows in the result set returned by this stored procedure
(ii) Exception IOException – if there was a problem with manipulating the incomplete job report file
(iii) Exception SQLException – if there was a problem with using the database
(iv) file incJobReportFile – the incomplete job report file
W) DBM_UPD_JOB_PHASE
1) Description: Update JOB_STAT table with tar status for each AIP that was appended to the job tar file

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB
	I
	INTEGER
	

	2
	JOB_PHASE
	I
	INTEGER
	0 = Initial value, job not started yet

1 = Migrate phase

2 = Tape Copy phase

3 = Splitter phase

4 = Cleanup phase

5 = Idle

6 = Done

	3
	PHASE_START
	I
	DATE
	

	4
	JOB_ERROR
	I
	INTEGER
	

	5
	Num_Rows_Updated
	Return
	INTEGER
	NA

3) Processing / Algorithms

(a) Receive request from DIOnAS Server to update Job phase and status tar status

(b) Update tape copy status in PROC_DAT table based on the CASID for the AIP by doing the following:

(i) Update TAR_STAT using PROC_CODE input argument

(c) Return to the DIOnAS Server the number of records successfully updated (i.e., this should always be one.)

(d) Oracle returns an exception if there was an error.
4) Database API Method

(a) Name – updJobPhase

(b) Description – updates the job phase field of the database for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(ii) int phase – the new phase of the job

(iii) int error – the new error code of the job

(d) Outputs

(i) int rowsUpdated – the value returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database
X) DBM_UPD_JOB_ERROR

1) Description: Update tar status for each AIP that was appended to the job tar file

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB
	I
	INTEGER
	

	2
	JOB_ERROR
	I
	INTEGER
	

	3
	Num_Rows_Updated
	Return
	INTEGER
	NA

3) Processing / Algorithms

(a) Receive request from DIOnAS Server to update Job phase and status tar status

(b) Update tape copy status in PROC_DAT table based on the CASID for the AIP by doing the following:

(i) Update TAR_STAT using PROC_CODE input argument

(c) Return to the DIOnAS Server the number of records successfully updated (i.e., this should always be one.)

(d) Oracle returns an exception if there was an error.
4) Database API Method

(a) Name – updJobError

(b) Description – updates the job error code field of the database for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(ii) int error – the new error code of the job

(d) Outputs

(i) int rowsUpdated – the value returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database
Y) DBM_GET_JOB_PHASE

1) Description: Identify the job phase of the current job

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	JOB
	I
	INTEGER
	

	2
	JOB_PHASE
	O
	INTEGER
	

3) Processing / Algorithms

(a) Receive request from DIOnAS Server to get the job phase

(b) Return to the DIOnAS Server the JOB_PHASE from the JOB_STAT table

(c) Oracle returns an exception if there was an error.
4) Database API Method

(a) Name – getJobPhase

(b) Description – gets the phase for a given job

(c) Inputs

(i) int jobSequence – the unique, system-assigned identifier for a job

(d) Outputs

(i) int jobPhase – the value returned by this stored procedure

(ii) Exception SQLException – if there was a problem with using the database

Z) DBM_SEL_COMPLETED_JOB

1) Description: Select data needed to produce the Completed Jobs view in the operations console GUI, under the "Completed Jobs" tab.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Result Set = Pointer to the set of records that were requested.
	NA
	ADDRESS
	 See below

	1.1
	JOB.JOB_SEQ
	O
	INTEGER
	Number

	1.2
	JOB.LIST_FILE
	O
	STRING
	File name

	1.3
	JOB.STARTED
	O
	DATE
	Date/time that job was created

	1.4
	JOB.FINISHED
	O
	DATE
	Date/time that job was completed

3) Processing / Algorithms

(a) Select all completed jobs (JOB.JOB_END not null)
(b) Return JOB.JOB_SEQ, JOB.LIST_FILE, JOB.STARTED, and JOB.FINISHED for each selected job.

(c) Return Number of Rows Returned in the sixth argument (This value is returned only from the JAVA interface code to the IMClient Application code)

(d) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – selCompletedJobs

(b) Description – constructs a tlist of completed jobs

(c) Inputs

(i) NONE

(a) Outputs

(i) Result: result set listed above returned as a JDBC PreparedStatement to caller, or

(ii) Exception SQLException – if there was a problem with using the database

AA) DBM_SEL_TAPES_USAGE

1) Description: Select data needed to produce the Tapes view in the operations console GUI, under the "Tapes" tab.

2) Arguments:

	
	Name
	I/O
	JDBC Type
	IF Spec

	1
	Result Set = Pointer to the set of records that were requested.
	NA
	CURSOR
	 See below

	1.1
	DLT.TAPE_SPEC
	O
	STRING
	Value String;

label is "Tape Spec"

	1.2
	# of rows in DLT table with this TAPE_SPEC value
	O
	INTEGER
	Value Number;

Label is " Objects"

The output needs to be ordered by DLT.TAPE_SPEC in ascending order.

1) Processing / Algorithms

(a) Select all tapes that are in use and a count of CASIDs for each tape.

(b) Return with labels all selected DLT.TAPE_SPEC and number of CASIDS with that tape specification.
(c) Oracle returns an exception if there was an error.

4) Database API Method

(a) Name – selTapesUsage

(b) Description – constructs a tape usage list for all tapes.

(c) Inputs

(i) NONE

(a) Outputs

(i) Result: The PreparedStatement JDBC object as it was returned to caller, OR

(ii) Exception: SQLException – if there was a problem with using the database

4.0 Hardware

4.1 Hardware Functionality

A) Provide DLT devices for storage of AIPs on permanent archive media. See section 2.4.2.

B) Use a Government-specified on-line mass storage device. See section 2.4.2.

C) Provide a backup capability / device. See the SSDOO Building 28 Backup Plan and section 2.4.2 of this document.

D) Provide network: FTP, HTTP and NFS capabilities. See section 2.4.3.

E) Provide expandable system to support metadata; i.e., cpu, disks, memory, etc. See 2.4.2 and 2.4.4.

4.2 Processors

A) Ndadse (the DIOnAS host machine) alias name will be "nssdcftp."

1) Processor Characteristics

(a) Sun Enterprise 3000.

(b) 1 processor, 168 MHz.

(c) 256 MB Memory.

(d) (2) Internal 4.0 GB drives.

(e) (1) METASTOR RAID Array 1.0 TB with about 800-900 GB of usable formatted space.

(f) Sbus, 64-bit 24MHZ

(g) (2) SCSI-2 cards with 8 total ports - ports 1 and 2 for MetaStor device, port 3 for tape units, ports 4 & 5 for external disks.

(h) Operating System - Solaris v7

2) File System Organization: DIOnAS will require eight disks organized as follows. Temporary disks will be set up for development, acceptance test, and configuration management -- these directories will be permanently moved to a development machine after system test. Future development, test and CM activities will not be performed on nssdcftp except on a CCB-approved basis.

(a) Disk 1 - System Disk: /

(i) Root

(ii) system: This includes all directories and subdirectories required by the operating system and other system programs.

(i) Oracle server/client

(iii) Other COTS products

(iv) Usr/local

(b) Disk 2 - Applications/Database: /Dionas1

(i) DIOnAS: Contains only the latest operational software and files required to run the software.

(i) dionas.properties

(ii) /dionas

1. dionas.jar

(iii) / migrator

1. migrator.exe, makepack.exe, setup file

(iv) / splitter

1. splitter.exe

(v) Oracle Database: This includes directories and subdirectories required by the Oracle RDBMS client.

(c) Disk 3 - Development/Integration Test: /DEVsw

(i) Development (temporary)

(i) Developers’ directories as needed

(ii) Integration Test

(i) dionas.properties

(ii) /dionas

1. All of the class files needed for integration test

(iii) / migrator

1. migrator.exe, makepack.exe, setup file

(iv) / splitter

1. splitter.exe

(v) /ops

1. /job

a. DIOnAS Server list validation error file

b. job initialization error file

c. /xx

i. input list file – named by operator

ii. processing list files e.g. IMMigrator-xxxxxxxx.lis and IMSplitter-xxxxxxxx.lis

iii. log files e.g. IMMigrator-xxxxxxxx.log, IMSplitter-xxxxxxxx.log, and IMTapeCopy-xxxxxxxx.log

iv. diag files . e.g. IMMigrator-xxxxxxxx.diag and IMSplitter-xxxxxxxx.diag

v. error files e.g. IMJob-xxxxxxxx.err and IMCleanup-xxxxxxxx.err

2. /staging/job

a. /xx

i. all .AIP files and the xx.tar files staged here

(d) Disk 4 - CM (temporary): /CM

(i) CM: For each operational version of each application running on nssdcftp, this directory will contain software source, build scripts, and other files.

(i) Unit descriptions

(ii) Source code

(iii) Version description document

(iv) Build files

(v) Test drivers

(vi) Test files

(e) Disk 5 - Acceptance Test: /Acceptest

(i) Contains test procedures, test drivers, and test results used to test the applications on nssdcftp for the purpose of doing system acceptance testing

(f) Disk 6 - Ops: /ops

(i) Operations: This disk contains directories for all files associated with operations, including:

(ii) /job directory containing

(i) DIOnAS Server list validation error file

(ii) job initialization error file

(iii) /xx - one subdirectory for each job identifier named after the job where xx is the job number. These directories contain:

1. input list file – named by operator

2. processing list files e.g. IMMigrator-xxxxxxxx.lis and IMSplitter-xxxxxxxx.lis

3. log files e.g. IMMigrator-xxxxxxxx.log, IMSplitter-xxxxxxxx.log, and IMTapeCopy-xxxxxxxx.log

4. diag files . e.g. IMMigrator-xxxxxxxx.diag and IMSplitter-xxxxxxxx.diag

5. error files e.g. IMJob-xxxxxxxx.err and IMCleanup-xxxxxxxx.err

(iii) Working Directory - directory for files associated with preparing list files, etc.

(g) Disk 7 - Staging

(i) Unix staging: This disk contains directories for all AIPs and tar filesin directories /stage/job/xx

3) Other Peripherals

(a) DLT Devices

(i) ATL jukebox with three DLT drives, 270 tapes maximum

(ii) Software capabilities: full control of robotics, identify tapes physically (by barcode). Identify tapes logically by IDA tape identifier or other identifier.

(b) Backup Device

(i) ATL jukebox.

B) VMS platform (for staging). NDADSB

1) Hardware Characteristics

(a) DEC Alpha 1000. Single processor that runs a 266 MHZ Alpha processor.

(b) 256 MB real memory and unlimited virtual memory

(c) 100 MBPS system bus

(d) 300 GB shared cluster disk (about 60 GB free and dedicated for migration staging)

(e) Running DEC Virtual Memory System (VMS) version 6.2.

2) File System Organization: DIOnAS will provide staging space for files to be ingested. A single directory is required for VMS excutables, i.e., the DMU ‘fileget’ application.

(a) Cluster Disks

(i) DIOnAS Applications: Contains only the latest operational software and files required to run the software.

(ii) DMU - will include one file ‘fileget’ (migrator VMS file retrieval executable)

(iii) File Staging Area (approximately 60 GB)

4.3 Network Architecture

As depicted in figure 2-3, NSSDCFTP is connected to a FDDI ring providing 100 Mbps bandwidth. Data is transferred from NDADSB to NSSDCFTP during the Migration process over this link. Data stored on the NSSDCFTP RAID device is available to users over the FDDI and through the GSFC CNE network. Additionally, data on NSSDC is available through NSSDCFTP via NFS over the GSFC CNE network.

[image: image5.wmf]Figure 2-3

DIOnAS

 Network Architecture

NDADS-B

NSSDCFTP

NSSDC

User

Community

FDDI

NFS

FTP/HTTP

GSFC CNE

Magic

4.4 Resource Utilization

A) Processor: The nssdcftp processor is specified to be 186 MHz. At that processing rate we believe that DIOnAS will achieve total sustainable throughput of at least 100 KBPS. There are no explicit DIOnAS processor utilization requirements. The nssdcftp processing capabilities can be augmented by adding up to 5 more processings.

B) Memory: The nssdcftp processor has 1 GB of memory. There are no DIOnAS memory utilization requirements. We can upgrade to 6 GB of memory if needed.ndadse (the DIOnAS host machine) alias name will be "nssdcftp."

C) Disk Storage: The nssdcftp processor has 8 GB of internal disk space and 36 GB of external disk space. Total disk space will be expanded to 62 GB of disk space with the purchase of 18 GB of additional disk storage. The MetaStor Disk Suite has 1 TB of raw disk and 800-900 GB of available disk space. We believe that the DIOnAS processor will have less than 50% disk utilization during initial processing. We believe that there is the possibility for 100% use of the RAID device during migration activities. There are no DIOnAS disk space utilization requirements.

D) Network / Bus Bandwidth: NDADS cluster FDDI provides 100 Mb bandwidth. CNE bandwidth is not predictable. We believe that the DIOnAS processing will place few network demands on the FDDI or CNE networks.

E) RAM: There are no DIOnAS RAM requirements. However, nssdcftp availability will contribute to the requirement for overall PBC Schedule-A availability of > 98%.

F) Storage / Retrieval Speeds: There are no DIOnAS requirements for disk / database storage/retrieval speeds. However, they must support overall 100 KBPS throughput expectations.

4.0 List of Appendixes

Appendix A: DIOnAS Subsystem Requirements

Appendix B: Appendix B: Acronyms/Glossary

Appendix C: DIOnAS Component Interface Definitions

Appendix D: Archive Inventory Database Definition

Appendix E: Processing Codes and Status Messages

Appendix F: DIOnAS On-line Data Dissemination

Appendix G: Audit Database

DIOnAS Design Document v3.2
11/29/2000
Page A-1
10
DIOnAS Design Document v5.1
2/24/2003
Page ii

_1098192550.doc
[image: image1.png]

Figure 2-1

DIOnAS Subsystem Diagram

_1098194462.doc

Figure 2-2

DIOnAS

Information Architecture

DIOnAS

Data/attributes

Dissemination

Environment

AIP / media for

Permanent

Archive

Data from

Providers on

VMS staging

disk

1. Create attributes

2. Bundle data and attributes

3. Store AIP on media

4. Store split data and

attributes on disk

_1025963720.doc

Figure 2-3

DIOnAS

 Network Architecture

NDADS-B

NSSDCFTP

NSSDC

User

Community

FDDI

NFS

FTP/HTTP

GSFC CNE

Magic

