Extractor Utility Requirements

Updates:

· Version 4.1, 2000-10-26, Created

Table of Contents

1. Overview

2. Basic Functionality Requirements

2.1. Customer Requirements

2.2. Derived Requirements

1. Overview
The Extractor Utility Version 4.1 shall generate a table of values from a list of NSSDC SFDU Archive Packages. This table of values shall be gathered from within the Archive Package or from the corresponding PGEN Log File.

This utility will be used to extract data values from these externally generated Archival Packages for use in Archival Storage and Interface purposes.

2. Basic Functionality
2.1. Customer Requirements
CR-1. The Extractor shall access a file list of Archival Packages along with a corresponding PGEN log file. From information contained in each, the following values shall be extracted and output into an output log file:

1. Archival Package Input Pathname – actual pathname of each Archival Package (as contained in the <input file list>)

2. ASID – unique Archive ID: value as contained in the PGEN log file and in the Archival Package Attribute Object

3. NSSDC Collection ID – value as contained in the Archival Package Attribute Object

4. Format ID – value as contained in the Archival Package Attribute Object

5. Identifier of Encoded Format – value as contained in the Archival Package SFDU Label

6. Ordered Applied Encodings – value as contained in the Archival Package Attribute Object

7. Project ID – value as contained in the Archival Package Attribute Object

8. Data type – value as contained in the Archival Package Attribute Object

9. Entry ID – value as contained in the Archival Package Attribute Object

10. Super Entry ID – value as contained in the Archival Package Attribute Object

11. Recommended Filename – value as contained in the Archival Package Attribute Object

12. Binary/ASCII Flag – derivable from information contained in the Archival Package Attribute Object; equivalent to pre-determined binary/ASCII type

13. Data start date time – value as contained in the Archival Package Attribute Object

14. Data end date time – value as contained in the Archival Package Attribute Object

15. Archival Package size – value as contained in the PGEN log file

16. Archival Package CRC – value as contained in the PGEN log file

CR-2. The Extractor shall be dependent on results from the Package Generator Utility (PGEN):

CR-2.1. A subset of Archival Package files created by the PGEN in a single session may be transferred to a new system running the Extractor. It is expected that the Archival Packages will be created on a remote machine and then a file transfer mechanism shall move these resultant files along with the PGEN output log file over to a system handling further processing of these Archival Packages.

CR-2.2. The PGEN log file must contain all the files to be processed by this utility. There may be one or more Archival Packages or Error messages within the PGEN log file, and the Error messages shall be ignored – this utility is only concerned with the normal status processing messages for Archival Packages it is expected to process.

CR-2.3 A file list pointing to these Archival Package files will be created pointing to actual pathnames. This file list will only contain Archival Packages that were created by a single PGEN run. A single PGEN run is defined as one where input source files were packaged and evidence of their successful creation is identified by a single entry for each in the PGEN output log file.

CR-2.4. Archival Package Pathnames are not required for identification across the PGEN and Extractor systems; the PGEN log file’s messages each have the ASID which corresponds to each Archival Package.

CR-3. The Extractor shall run via telnet or shell script from a UNIX – Sun 4 and 5 and DEC Alpha UNIX.

2.1. Derived Requirements
DR-1. The Extractor shall operate via telnet or shell script with the following calling sequence:

$ <utility name> <input file list pathname> <PGEN log pathname> <output log pathname> <output status pathname>
where each of the pathnames should be an absolute pathname and each parameter is as follows:

<utility name> - the name of this utility, most likely extractor.

<input file list pathname> - a list of Archival Package pathnames, all included in <PGEN log pathname>, in the order to be processed.

<PGEN log pathname> - the PGEN log file created by the PGEN utility which should contain records for each of the Archival Packages referred to in the <input file list pathname>
<output log pathname> - output for this utility, containing one message line per input Archival Package from the <input file list pathname> containing the output data listed in CR-1. A strict message format is expected here so an external program may parse the contents. The following are the formats of 2 message types, normal and error:

Normal Message (each value is delimited by a TAB and the final value is terminated with a CR/LF pair):

<ASID><tab>

 <Status CODE (for success message will = "0")><tab>

 <Status Message (for success message will = "EXT-P_0 PASS:")><tab>

 <Input Package pathname><tab>

 <NSSDC Collection ID><tab>

 <Format ID><tab>

 <Identifier of Encoded Format (From AIP-SFDU structure)><tab>

 <Ordered Applied Encodings><tab>

 <Project ID><tab>

 <Datatype><tab>

 <Entry ID><tab>

 <Super Entry ID><tab>

 <Recommended file name><tab>

 <Binary/ASCII flag><tab>

 <data start times><tab>

 <data end times><tab>

 <AIP size><tab>

 <AIP CRC><CR/LF>
For Example:

imag0000001533<tab>

 0<tab>

 EXT-P_0 PASS:<tab>

 /export/home/███/ext/STAGE/IMAGE.IMAGE1.UDFC.199501502.tgz.aip<tab>

 00-017A-00E<tab>

 ZTBD017A<tab>

 ZZTBD17A<tab>

 tar,gzip<tab>

 none<tab>

 none<tab>

 none<tab>

 none<tab>

 IMAGE.IMAGE1.UDFC.199501502.tgz<tab>

 BINARY<tab>

 1995-01-15T02:00:00<tab>

 none<tab>

 191638<tab>

 d6d012d5<cr/lf>
Error Message (each value is delimited by a TAB and the final value is terminated with a CR/LF pair):

<NULL><tab>

 <Status CODE (for error message will = 1..n<tab>

 <Status Message: will = "EXT-F_n ERR:"> + human readable message><tab>

 <Input Package Pathname><CR/LF>

For example:

<tab>

 17<tab>

 EXT-E_17 ERR: could not determine BINARY/ASCII flag for package file<tab>

 /export/home/███/ext/STAGE/IMAGE.IMAGE1.UDFC.199501502.tgz.aip<cr/lf>
<output status pathname> - output for this utility, containing any dialog as created while this utility executes. No strict formats for the messages are required.

DR-2. The Extractor shall have the following inputs:

<input file list pathname> and <PGEN log pathname>
where each are formatted input files created externally and entered as input parameters 1 and 2, respectively, and each parameter has the following internal formats:

<input file list pathname> - Archival Package pathnames giving their location in a directory accessibleto this calling utility. This list must be created on the accessible directory so the files may be found. CR/LF or just LF delimits all pathnames.

<PGEN log pathname> - the PGEN log file created by the PGEN utility which contains all the Archival Packages referred to in the <input file list pathname>. Each message line corresponding to an Archival Package pathname in the list, and has the following message formats:

<ASID><tab>

 <Status CODE = 0 success><tab>

 <Status Message: = "MPAK-P_OK PASS: + human readable message"><tab>

 <byte count><tab>

 <CRC><CR/LF>

For example:

imag0000001533<tab>

 0<tab>

 MPAK-P_OK PASS: "/usr/local/etc/jp_apache_1.3.4/cgi-bin/bolero/███/SUITE/IMAGE.IMAGE1.UDFC.199501502.tgz" into "/usr/local/etc/jp_apache_1.3.4/cgi-bin/bolero/███/STAGE/IMAGE.IMAGE1.UDFC.199501502.tgz.aip"<tab>

 191638<tab>

 d6d012d5<cr/lf>

DR-3. The Extractor shall have the following outputs:

<output log pathname>, <output status pathname>, <executable return code>, and <stdout message>
where each parameter has the following characteristics:

<output log pathname> - data output for this utility corresponding to one entry per input pathname found in <input file list pathname>, whose message formats per line is described in DR-1.

<output status pathname> - unformatted messages from this utility for diagnostic purposes.

<executable return code> - returned to calling program for this utility, either a ‘0’ code for normal return, or a ‘-1’ for an unrevoverable error where it is likely not all input items have been processed.

<stdout message> - returned to the calling program for this utility via the stdout pipe, either the strings “SUCCESS” or “FAILURE”.

DR-4. The Extractor shall perform the following processing algorithms:

[image: image1.wmf]start

1. check

input

parameters

2. get

input file

entry

3.

load

input file

as SFDU

4.

load

K object

as PVL

5.

match PGEN

log entry

7. create

output

message

end

6. determine

ASCII/BINARY

flag

The diagram above is the functional flow diagram for this utility. The utility sets up (start -> 1), works on each input list file entry (2, 3, 4, 5, 6, 7 -> 2), until complete (2 -> end). The following describes each detailed state of operation:

<start> - this utility starts with four parameters, described in DR-1, from a Telnet console or a shell script.

1. check input parameters – there are four parameters, two input and two output files. The two input files are opened for read-only access and checked for existence, and the two output files are created for message logging purposes.

2. get input file entry – input parameter one, invoked during this utilities start sequence, contains Archival Package pathnames. Here, a file is read from the input list file.

3. load input file as SFDU – each Archival Package is a formatted SFDU. Each SFDU is composed of the enclosing Z object with ADID=CCSD0001, which contains first a K attribute object with ADID=NSSD0331 and then an I object with an appropriate ADID containing the data. It is this I object ADID which corresponds to the value 'Identifier of Encoded Format", described in CR-1 as one of the required input values needed for the Extractor message log. In this step, the SFDU is parsed and checked for validity, and the appropriate values stored for future use.

4. load K object as PVL – each Archival Package SFDU contains a K attribute object, and its data format (referenced as ADID=NSSD0331) has a PVL data format. The K attribute object contains the ASID, nssdc_collection_id, format_id, ord_applied_encodings, project_id, datatype, entry_id, super_entry_id, recommended_filename, data_start_time, data_end_time, PROCESSING_REPORT and STREAM_TYPE (to determine ASCII/BINARY FLAG value) data values. In this step, the PVL is parsed and checked for validity, and the appropriate values stored for future use.

5. match PGEN log entry – the PGEN log, the second input parameter to this utilities start sequence, contains the process log entry of each Archival Package while normally created, plus the ASID, the file size and CRC. The ASID is used to match the Archive Package and the file size and CRC are extracted for this entry.

6. determine ASCII/BINARY flag – using the PROCESSING_REPORT and STREAM_TYPE, this utility determines the ASCII/BINARY flag. The algorithm is illustrated below:

[image: image2.wmf]start

does

STREAM_TYPE

= BINARY

?

does

PROCESS

REPORT =

expected

BINARY

WARNING?

=

BINARY

yes

yes

no

=

ASCII

no

Here, each time the PROCESSING_REPORT and STREAM_TYPE are extracted from the K object in the Archival Package, a determination is made whether the ASCII/BINARY flag value is equal to BINARY or ASCII. As depicted above, sometimes an Archival Package will be defined as ASCII, but the PROCESS_REPORT will have a note saying that the originator expected BINARY, but this file only had ASCII characters. In this case, the flag is equal to BINARY, otherwise, the ASCII data type remains ASCII.

7. create output message – if an error was encountered, the log is output with that error message. If there was no error, the data required, separated by tabs, is output to the log file. All message formats and data values required are defined in DR-1.

<end> - when no more input list file items exist, end program. Then report either a SUCCESS or FAILURE. SUCCESS may not mean all Archive Packages were successfully processed, but it does mean all files were tried. A FAILURE means some unrecoverable problem occurred. Error messages shall be defined in the Startup an Operational Document companion for this utility.

_1033465463.unknown

_1032186221.unknown

