Extractor Utility Startup and Operation

Updates:

- Created, version 4.1, 2000-10-26

Table of Contents:

1. Overview

2. Startup and Operation

3. Message Codes

4. Troubleshooting Guide

1. Overview

The Extractor Utility (PSU) Version 4.1. starts from Sun or Dec Alpha UNIX through a Telnet session, or equivalent, to extract various values from a list of NSSDC-formatted Archival Packages and output them into a log file, according to the Extractor Utility Requirements, Version 4.1, 2000-10-23.

This document describes how to use the Extractor. It is expected that the reader should be able to do the following tasks after reading this document:

1. Start the Extractor up with the proper input parameters

2. Operate the Extractor effectively by understanding how it works in your environment

3. Analyze the Extractor's output to understand what it accomplished with the data it has been given

4. Troubleshoot problems as they arise

2. Startup and Operation

Startup and Operation Table of Contents:

SO-1. Normal startup (and quick startup reference)

SO-2. Input and output file formats

SO-3. Status messages

SO-4. Setup Guide

SO-1. The Extractor operates as a UNIX program running from a terminal via Telnet. The user should start a Telnet session and call the Extractor program by its executable (a program or shell script may also be created which does the following equivalent invocation).

SO-1.1. Quick Startup: To process packages to create a list of attributes output to the log file, from the terminal type (detailed description in SO-1.3):

$ <extractor path> <input list file path> <PGEN log file path> <log file path> <status file path>
SO-1.2. Extractor accesses each package file, cross-references its entry in the PGEN log file using the Archival Storage ID (ASID), attains the following values on the same UNIX machine, and outputs these values to the log file:

1. Archival Package Input Pathname – actual pathname of each Archival Package as contained in the <input file list>

2. ASID – unique Archive ID: value as contained in the PGEN log file and in the Archival Package Attribute Object

3. NSSDC Collection ID – value as contained in the Archival Package Attribute Object

4. Format ID – value as contained in the Archival Package Attribute Object

5. Identifier of Encoded Format – value as contained in the Archival Package SFDU Label

6. Ordered Applied Encodings – value as contained in the Archival Package Attribute Object

7. Project ID – value as contained in the Archival Package Attribute Object

8. Data type – value as contained in the Archival Package Attribute Object

9. Entry ID – value as contained in the Archival Package Attribute Object

10. Super Entry ID – value as contained in the Archival Package Attribute Object

11. Recommended Filename – value as contained in the Archival Package Attribute Object

12. Binary/ASCII Flag – derivable from information contained in the Archival Package Attribute Object; equivalent to pre-determined binary/ASCII type

13. Data start date time – value as contained in the Archival Package Attribute Object

14. Data end date time – value as contained in the Archival Package Attribute Object

15. Archival Package size – value as contained in the PGEN log file

16. Archival Package CRC – value as contained in the PGEN log file

The filenames of each command line parameter provided on the command line are to be specified by full pathname, where the directories already exist. No alteration of the package files on the source machine occurs. An input list file containing a list of package file pathnames is the input to the Extractor.

SO-1.3. Startup Explanation: The Extractor starts from an executable named extractor. The normal method of calling it passes four required parameters. If you do simply type ‘extractor’ or include the wrong number of parameters it will return the following usage message, which shows exactly what you should do to start in its normal operation mode:

$ extractor <input list file path> <PGEN log file path> <log file path> <status file path>

where:

extractor – the executable name of the Extractor. You might have to actually type in the full pathname. For example, if the full pathname is /ndadse/home/userid/dmu/bin/extractor, then use this in place of extractor at the command line.

SO-1.3.1. Hint: Look in the directory path where the extractor executable resides and determine the full directory path by typing:

$ pwd
For example, if the output of the pwd command is /ndadse/home/userid/dmu/bin, then when you run the executable, type:

$ /ndadse/home/userid/dmu/bin/extractor <input list file path> <PGEN log file path> <log file path> <status file path>
<input list file path> - the first parameter is the complete path to an input list file which contains externally created and compiled Archival Package files. The format of this input list file is given in SO-2.

For example, if the full path where the input list file resides is /ndadse/home/userid/dmu/listfiles/listfile.lst then when you run the executable (assuming the examples up to this point are true), type:

$ /ndadse/home/userid/dmu/bin/extractor \

 /ndadse/home/userid/dmu/listfiles/listfile.lst \

 <PGEN log file path> <log file path> <status file path>
Note: The \ terminator at the end of the lines above and in the following examples is valid in UNIX. It extends the command length at the Telnet terminal when a typed command extends beyond a single line. You may omit the \ terminator on the last line of the command.

<PGEN log file path> - the second parameter is the complete path to a log file that was created by the PGEN run which created the Archival Packages designated in the input list file. Each line input into this log file corresponds to one entry line in the input list file, plus possible other messages that will be ignored. Not all Archival Package files found in this log file need to be processed by this utility – the only constraint is that, for each Archival Package file in the input list file that there be a corresponding entry in this PGEN log file that contains the same ASID. The format of this PGEN log file is given in SO-2

For example, if the full path where the PGEN log file resides is /ndadse/home/userid/dmu/logs/PGEN_out.log then when you run the executable (assuming the examples up to this point are true), type:

$ /ndadse/home/userid/dmu/bin/extractor \

 /ndadse/home/userid/dmu/listfiles/listfile.lst \

 /ndadse/home/userid/dmu/logs/PGEN_out.log \

 <log file path> <status file path>
<log file path> - the third parameter is the complete path to a log file which is created by the Extractor. It will be overwritten if it exists. Each line output into this log file corresponds to one entry line in the input list file.

For example, if the full path where the log file resides is /ndadse/home/userid/dmu/logs/out.log then when you run the executable (assuming the examples up to this point are true), type:

$ /ndadse/home/userid/dmu/bin/extractor \

 /ndadse/home/userid/dmu/listfiles/listfile.lst \

 /ndadse/home/userid/dmu/logs/PGEN_out.log \

 /ndadse/home/userid/dmu/logs/out.log \

 <status file path>
<status file path> - the fourth and final parameter is the complete path to a status file which is created by the Extractor. It will be overwritten if it exists. Output to this file corresponds to all messages, including errors, in the order that the Extractor creates them. Messages output to the log file are also output here.

For example, if the full path where the error / status file resides is /ndadse/home/userid/dmu/logs/out.err then when you run the executable (assuming the examples up to this point are true), type:

$ extractor \

 /ndadse/home/userid/dmu/listfiles/listfile.lst \

 /ndadse/home/userid/dmu/logs/PGEN_out.log \

 /ndadse/home/userid/dmu/logs/out.log \

 /ndadse/home/userid/dmu/logs/out.err
SO-2. The Extractor expects an input list file in the form of a list and a PGEN log file in the message format output by PGEN. It outputs the required data in an output log file in messages with values tab-delimited. Archival packages are self-describing – they contain the Archival Storage ID (ASID) in the Attribute Object, and this value is checked by the Extractor to verify a match between the Archival Package file in the input list file and the corresponding message in the PGEN log file. The format for the input list file is one full file pathname per Archival Package candidate, separated with one LF (or CR/LF) per entry. The valid format for the PGEN log file is as follows:

<ASID><tab>

 <Status CODE for success message will be = “0”><tab>

 <Status Message for success message will be = "MPAK-P_OK PASS: + human readable message"><tab>

 <byte count><tab>

 <CRC><CR/LF>

For example:

imag0000001533<tab>

 0<tab>

 MPAK-P_OK PASS: "/usr/local/etc/jp_apache_1.3.4/cgi-bin/bolero/███/SUITE/IMAGE.IMAGE1.UDFC.199501502.tgz" into "/usr/local/etc/jp_apache_1.3.4/cgi-bin/bolero/███/STAGE/IMAGE.IMAGE1.UDFC.199501502.tgz.aip"<tab>

 191638<tab>

 d6d012d5<cr/lf>
The Extractor has a strict message format for required output data values to its output log file so an external program may parse the contents. The following are the formats of 2 messages, normal and error:

Normal Message (each value is delimited by a TAB and the final value is terminated with a CR/LF pair):

<ASID><tab>

 <Status CODE for success message will be = “0”><tab>

 <Status Message: = "EXT-P_0 PASS:"><tab>

 <Archival Package Input Pathname><tab>

 <NSSDC Collection ID><tab>

 <Format ID><tab>

 <Identifier of Encoded Format (From AIP-SFDU structure)><tab>

 <Ordered Applied Encodings><tab>

 <Project ID><tab>

 <Datatype><tab>

 <Entry ID><tab>

 <Super Entry ID><tab>

 <Recommended file name><tab>

 <Binary/ASCII flag><tab>

 <data start time><tab>

 <data end time><tab>

 <AIP size><tab>

 <AIP CRC><CR/LF>
For Example:

imag0000001533<tab>

 0<tab>

 EXT-P_0 PASS:<tab>

 /export/home/███/ext/STAGE/IMAGE.IMAGE1.UDFC.199501502.tgz.aip<tab>

 00-017A-00E<tab>

 ZTBD017A<tab>

 ZZTBD17A<tab>

 tar,gzip<tab>

 none<tab>

 none<tab>

 none<tab>

 none<tab>

 IMAGE.IMAGE1.UDFC.199501502.tgz<tab>

 BINARY<tab>

 1995-01-15T02:00:00<tab>

 none<tab>

 191638<tab>

 d6d012d5<cr/lf>
Error Message (each value is delimited by a TAB and the final value is terminated with a CR/LF pair):

<NULL><tab>

 <Status CODE for message will be = “1”..n ><tab>

 <Status Message: for message will be = "EXT-F_n ERR: + human readable message"><tab>

 <Archival Package Input Pathname><CR/LF>

For example:

<tab>

 17<tab>

 EXT-E_17 ERR: could not determine BINARY/ASCII flag for package file<tab>

 /export/home/███/ext/STAGE/IMAGE.IMAGE1.UDFC.199501502.tgz.aip<cr/lf>
SO-3. The Extractor sends output for status, warnings, and errors to three separate devices, all with their own function. It is these output messages that report to the user how the Extractor operated on a given package file list, input via the input list file. The three outputs are to:

1. The console’s screen – {SUCCESS, FAILURE}; either of these strings appear at completion of the execution in normal mode.

2. The log file – {<status for each corresponding data file identified in the input file>}; this is an error / status code as described in section 3. Message Codes. Upon normal operation, and a return of “SUCCESS”, there will be one log entry per Package file identified in the input file.

3. The status file - {<status of any kind>}; this is an error / status code as described in section 3. Message Codes. As error / status conditions occur, their messages all get put here. There will generally be an equal or greater number of messages here than in the log file because they include all the messages in the log file plus any extras. There are normal status, warning, and error messages that will end up here – and a SUCCESS only means that the Extractor operated from start to finish properly and did not have to halt in mid-process.

These output messages, and the order in which they are seen at the three separate output devices, determine overall success. Section 3. Message Codes provides a complete listing of error / status codes, what they mean, and when they are expected to occur in relation to the Extractor Lifecycle illustrated in Figure 1. Error / status codes will only fire during a designated phase in the Extractor Lifecycle. Figure 1 illustrates the Extractor lifecycle as described in the Extractor Requirements Document:

[image: image1.wmf]start

1. check

input

parameters

2. get

input file

entry

3.

load

input file

as SFDU

4.

load

K object

as PVL

5.

match PGEN

log entry

7. create

output

message

end

6. determine

ASCII/BINARY

flag

Figure 1. Extractor Lifecycle

Table 1 lists the general stages of PSU operation, according to this PSU lifecycle:

	Stage Number
	Stage Name
	Stage Type
	Stage Description

	1
	Check input parameters
	Single (goes to 2 or end)
	Ready input list file and PGEN log file, create output files

	2
	Get input file entry
	Cyclic (goes to 3 or end)
	Parse input list file to get package file item candidate (SO-2)

	3
	Load input file as SFDU
	Cyclic (goes to 4 or end)
	Load Archival Package, which is an SFDU, get needed values

	4
	Load K object as PVL
	Cyclic (goes to 5 or end)
	Extract K in SFDU and parse needed values

	5
	Match PGEN log entry
	Cyclic (goes to 6 or end)
	Search PGEN log file for ASID match

	6
	Determine ASCII/BINARY flag
	Cyclic (goes to 7 or end)
	Use K object values to determine ASCII/BINARY flag

	7
	Create output message
	Cyclic (goes to 2)
	Create output message with values

Table 1: Extractor General Stages

In Table 1, the general stages of Extractor operation each have a type and functional description that run in either type Single or type Cyclic. These relate to how you may expect to see error / status codes. Stage 1 and its respective error / status codes will fire only once, when needed, during operation. In contrast, Stages 2 through 7 and their respective error / status codes will fire once for every input item successfully parsed from the input list file, input as parameter 1 (described in SO-1.3). Refer to section 3. Message Codes for more a detailed reference of error / status messages and what they mean.

SO-4. The Extractor (version 4.1) is a relatively simple utility that will be named ‘extractor_v4_1’ when first received. It is suggested, and assumed in above sections, that the operator will change the name of the executable to ‘extractor’, or create a soft link through the UNIX command:

$ ln –s extractor_v4_1 extractor

This is all that needs to be done, and this is optional. No other configuration steps should be necessary provided this executable is set up like any UNIX executable, and its permissions and flags are correctly set for the operator’s environment and userid.

3.Message Codes

Message Codes Table of Contents:

EC-1. Extractor message code overview

EC-2. Extractor message code grouping according to general stages

EC-1. The Extractor performs complete logging and user notification of normal operational status and error codes. There are the following three message types:

1. Normal processing messages, which specify the current input package file being processed.

2. Process Errors, where conditions while processing are found that halt the process. Following this error message, the next source process file in the list file will be processed, if possible.

3. Utility Errors, where conditions in the program environment cause the Extractor to stop operation for the session. In this case, restart of the Extractor must take place.

EC-2. The Extractor generates Error Messages as appropriate and outputs all of them into the status file at <status file path>. The messages will identify which item was being processed when the condition arose and will indicate what condition arose. The formats of these error messages are described in SO-2.

EC-3. Table 2 is the Extractor error / status code grouping according to the general stages in the operational lifecycle (there are 19 error codes, 1 normal code and 2 warnings). The perspective for Table 2 is that from the Extractor lifecycle stages.

Additional information is contained in the <status id>. Within the Status ID, the symbols 'P', 'E', 'FE', and 'W' are found. Their meanings are as follows:

· 'P' means 'pass' and the package was processed successfully

· 'E' means 'Error' and it stops that particular package processing but the Extractor continues to other packages

· 'FE' means 'Fatal Error' and it stops the Extractor

· 'W' means 'Warning' The package passed but some information of note to the user has been generated.

	Operation
	Status Number
	Status ID
	Error / Status Code Description

	1. Check input parameters

	Create status file (all messages go here)
	1
	EXT-FE_1
	Status file name or path incorrect / not creatable

	Create log file (output it one entry per item in list file)
	2
	EXT-FE_2
	Log file name or path incorrect / not creatable

	Access input list file
	3
	EXT-FE_3
	Input list file name or path incorrect / not found

	Access package log file
	4
	EXT-FE_4
	Package log file name or path incorrect / not found

	2. Get Input File Entry

	Parse input list file
	5
	EXT-FE_5
	failed

	3. Load Input File as SFDU
	
	
	

	Parse PGEN log file
	6
	EXT-E_6
	could not access / parse package file

	4. Load K Object as PVL

	7
	EXT-E_7
	could not find attribute object in package file

	8
	EXT-E_8
	no data in attribute object

	9
	EXT-FE_9
	failed creating tempfile

	10
	EXT-FE_10
	failed creating tempfile

	11
	EXT-FE_11
	could not write a char to temp file

	12
	EXT-FE_12
	could not find data object in package

	13
	EXT-FE_13
	could not be loaded

	14
	EXT-FE_14
	parameter returned NULL

	15
	EXT-FE_15
	value returned NULL

	16
	EXT-FE_16
	has missing values

	5. Determine ASCII/BINARY flag

	17
	EXT-FE_17
	could not determine BINARY/ASCII flag

	warning
	0
	EXT-W_0
	processing message shows BINARY flag expected when only ASCII was found

	warning
	0
	EXT-W_0
	processing message shows no warning - assuming ASCII flag

	6. Match PGEN Log Entry

	Parse PGEN log file / match ASID
	18
	EXT-E_18
	failed

	19
	EXT-FE_19
	went to unexpected state in algorithm

	7. Create Output Message

	normal log message
	0
	EXT-P_0
	has output values

Table 2: Status/Error Code Mapping to Lifecycle Stages

4. Troubleshooting Guide

TBD.

_1033465463.unknown

