Package Generator Utility – Data Migrator (PGU-DM) Requirements

Developed by NOST

Version 4.2

2001-12-01

Approvals Page
	Position
	Name
	Signature
	Date

	
	
	
	

	Author
	█████████
	
	2001-12-01

	
	
	
	

	Peer Review Lead
	
	
	

	
	
	
	

	Task Lead
	█████████
	
	2001-12-01

	
	
	
	

	Government ATR
	Don Sawyer

NASA GSFC
	
	2001-12-01

	
	
	
	

Versions History

	Version ID
	Description
	Date

	
	
	

	Version 4.2
	Updated as PGU-DM 4.2 from PGU-DM 41.. Adds requirement for checking for illegally large VMS record size. Add requirement to use externally provided ASCII/Binary flag as the primary determinant of the original file type.
	2001-12-01

	Version 4.1
	Updated as PGU-DM 4.1, supplemental to DMU 4.1, DMUX 4.1, and PGU 4.1 for configurations requiring packgen (or migrator), makepack, and VMS fileget only

Note: except for the overview section, this document is the same as in Version 3.1
	2001-02-15

	Version 3.1
	Updated, supplemental to DMU 3.1 product release
	1999-12-21

	Version 7
	Updated
	1999-09-28

	Version 0
	Created, supplemental to DMU product release, including migrator, makepack, and VMS fileget components
	1999-07-27

	
	
	

Table of Contents:

1. Overview

2. Basic Functionality Requirements

· 2.1 Customer Requirements

· 2.2 Derived Requirements

1. Overview

These requirements identify a utility that supports a subset of the functionality in a proposed NDADS ingest and migration environment originally requested by the NSSDC in July 1999. It gives requirements for the basic functionality, and it gives requirements related to the architecture chosen. It assumes that this functionality subset shall be encapsulated into a software utility named the PGU-DM. .

The PGU-DM transforms resident VMS (and other supported platforms, TBD) files into an archival package suitable for storage into a data archive and transfers them onto a UNIX disk as a single file with high reliability, at a bandwidth sufficient enough to perform activities within the NSSDC schedule. This archival package is expected to contain data in an archive-defined platform-independent canonical byte stream and several attributes that serve a variety of functions. Some features of this type of standardized archive package include a self-identification capability, reconstitution of the original file, platform independence, and an enhanced support documentation capability.

The PGU-DM builds on the success of the Information Set Product Creator (ISPC) by incorporating the ISPC software architecture. The following are key features of the ISPC architecture used in PGU-DM development:

· It is a “bare-bones” utility which communicates with the user via Telnet, and may be run from a shell script

· It uses objects separated into processes which communicate via messages
· Its processes to input data are easily installed and used
· Its restricted object oriented code structure, communications and process management features are standard across dissimilar platforms
The PGU-DM is implemented as three processes distributed across VMS and UNIX for direct access to source and target platform dependent devices. The organizational context for these requirements references three types of processes, all a part of the PGU-DM, as follows:

1. package generator – starts on UNIX with a list file with needed attributes and manages processes and maintains a log.

2. file get – starts on VMS and accesses VMS files; from them it creates an archive-defined canonical byte stream and an attribute list containing needed attributes, and it passes these on to the make pack process.

3. make pack – starts on UNIX and creates an attribute object with attributes from the package generator and file get processes; it then packages the attribute object with the archive-defined canonical byte stream into a single file.

Additional support utilities shall be created to manipulate the output package created with the PGU-DM, and are beyond the scope of this document.

The section entitled 2. Basic Functionality Requirements originally reflected basic features for the PGU-DM, assuming a target date of September 27th, 1999 to finish development. This has been updated to reflect additional requirements as of December 1, 1999.

2. Basic Functionality Requirements

2.1. Customer Requirements (CR)

CR-1. The PGU-DM shall access a file in a VMS environment and extract the content of the VMS file with selected VMS attributes; it shall create an archive-defined Canonical Byte Stream Object. It shall merge the selected VMS attributes and PGU-DM generated attributes with externally derived attributes input from a file containing a table of values, to create an Attribute Object. It shall package the Canonical Byte Stream Object with the Attribute Object to generate an Archival Package:

CR-1.1. The Canonical Byte Stream Object and Attribute Object data format shall be independent of any underlying operating system or file system and therefore may be moved across dissimilar systems without corruption as long as the underlying systems support byte streams. The Attribute Object data format shall be PVL (ISO 14961). Its content is described below under Derived Requirements (DR 4.4.2)

CR-1.2. The information content of these two objects shall be sufficient to allow reconstituting the original VMS file in a VMS environment with the selected VMS attributes.

CR-1.3. Where the original VMS file has a set of VMS attributes that are deemed to be inappropriate, these are to be changed in a clean-up mode. The new values will be recorded as original attributes and a note added to the NSSDC attribute object processing history attribute to reflect this cleanup.

CR-2. For verification purposes, the PGU-DM shall perform the VMS file to Archival Package Transformation with CRC checksums over the original VMS record reads, the canonical byte stream generated, and the portion of the Attribute Object covering the original file and canonical file information.

CR-3 The PGU-DM shall employ algorithms to convert VMS files to canonical files as described in Canonical Data Requirements, 1999-12-23.

CR-4. The PGU-DM shall perform complete logging and user notification of normal operational status, error and warning codes, and statistics:

CR-4.1. There shall be two files that log messages for the PGU-DM – one that logs all activities, and one that logs only one message per record in the list file.

CR-4.2. There shall be five message types:

1. Normal processing messages, which specify the current input VMS file being processed.

2. Normal statistical messages, which specifies the current performance of the PGU-DM in about 1 Gigabyte intervals and specifies the overall processing performance at the end of a session. A session is defined as the time it takes to process an entire input list file.

3. Process Warnings where conditions while processing are found that should be flagged, but that do not halt the process of gathering selected VMS attributes and the creation of a canonical byte stream for incorporation into an archival package.

4. Process Errors where conditions while processing are found that halt the process of gathering selected VMS attributes and the creation of a canonical byte stream for incorporation into an archival package for the source file. Following this error message, the next source VMS file in the list file will be processed, if possible.

5. Utility Errors where conditions in the program environment cause the PGU-DM to stop operation for a session containing one list file. In this case, restart of the PGU-DM must take place.

CR-4.3. The last message output as a log message by the PGU-DM, whether an Error, Warning or Normal message, is e-mailed to operators whose e-mail address is in an “email.lst” file. Upon termination of the program, a final message shall be printed to the terminal screen. The e-mailing option should be disable-able.

CR-4.4. Direct-to-disk and terminal device notification of all messages shall be facilitated, and any buffering of IO for the log files shall be disabled, so that in event of system failure, the last possible message will be saved for debugging purposes.

CR-4.5 The PGU-DM shall set an exit code at the end of its processing, indicating whether or not the PGU-DM processing completed normally. PGU-DM may successfully complete even if some packages are not successfully created.

CR-5. The PGU-DM shall be developed in a way to achieve acceptable performance without compromising reliability and error handling:

CR-5.1. The software shall be designed in a way so that all variables used in code in the PGU-DM will have all possible boundary conditions explicitly defined and handled throughout to maximize the chance of catching common code related bugs and errors.

CR-5.2. The software shall be designed in a way to co-exist with other software systems in that it does not tie up resources unnecessarily. However it shall not protect against other tasks grabbing excessive resources (therefore, IO-binding techniques such as changing the software runtime priority to be higher than those in the system shall not be employed).

CR-5.3. The software shall be designed in a way so that it includes the ability to recover gracefully from unexpected interruptions.

CR-5.4. The software shall not prevent any possibilities of the machine crashing due to user-overload.

CR-5.5. The software shall be designed in a way so that it may be operated in a multi-tasking mode where two or three instances of itself may coexist at the same time and operate normally. Bandwidth in this configuration is expected to reduce if source and target IO-devices are the same. Some performance benefit may result if source and target IO-devices are different, but there shall be no requirement to test this configuration.

CR-5.6. The software shall not implement a method of tracking if it has halted due to system or program related interference, except to issue a status message with its current calculated performance after about every 1 Gigabyte of source data processed.
2.2. Derived Requirements (DR)

DR-1. The PGU-DM shall interface with its file get process on VMS to access, and not modify, a VMS file:

DR-1.1. It shall access the file on a raw record–by–record basis to extract data without VMS addition of record-delimitation.

DR-1.2. It shall access the file management block to extract the following VMS attributes:

· File Organization

· Record Format

· Record Control

· Record Size

· Date-Time of Creation

· Date-Time Last Modified

DR-1.3. It shall calculate a CRC immediately after each raw record read, one CRC per file, and store this attribute value into an attribute list for data processing and validation purposes. The bytes are CRC check summed in the order in which they are found in order to create an Original VMS file’s CRC attribute.

DR-1.3.1. The CRC check summing algorithm, wherever needed, shall be the same one implemented with the popular data packaging and compression routines “PKZIP” and “GZIP”.

DR-1.4. It shall calculate original file size and maximum original record size encountered immediately after each raw record read, one value per file, and store these attribute values into an attribute list for data processing and validation purposes. See DR-3.

DR-1.5. It shall calculate, by inspection of each byte, whether there is ASCII or BINARY data in each raw record read and store this attribute value into an attribute list as the ORIGINAL STREAM_TYPE for data processing and validation purposes described in DR-2 and DR-3.

DR-1.6. It shall generate Error and Warning Messages as appropriate. Messages will identify which item was being processed when the condition arose and will indicate what condition arose. Format of these messages shall be:

<unique archive id> <status number)> <status id> <status type> <status message>

where:

<unique archive id> is the unique id string passed into the PGU-DM

<status number> is 0 for success and non-zero if not.

<status id> is ASCII status message identifier which includes the status number.

<status type> is PASS:, WARN:, or ERR:

<status message> is human readable text giving meaning of status number.

DR-2. The PGU-DM file get process shall identify a viable canonical byte stream object type from the original VMS file:

DR-2.1. It shall recognize that the following VMS attribute sets may uniquely identify the VMS file as convertible into a viable canonical byte stream object by storing these attribute values into an attribute list immediately after accessing the file management block:

· File Organization – {sequential}

· Record Format – {fixed, variable, stream_lf, undefined}

· Record Control – {fortran, carriage_control, none}

· Record Size – integer{0 - 32767}

· Date-Time of Creation – any valid VMS formatted Date-Time is accepted

· Date-Time Last Modified – any valid VMS formatted Date-Time is accepted

DR-2.2. It shall recognize that byte values in the original file may uniquely identify the proper canonical byte stream transformation. Files may contain byte values that are either ASCII or BINARY data. The determination of whether the VMS file is ASCII or BINARY shall occur during DR-3.

DR-2.3. It shall recognize that the following VMS attribute sets are NOT considered viable for conversion of the original file to a canonical byte stream object (they simply are not expected to be in NDADS):

· File Organization – {relative, indexed, <anything else not in DR-2.1>}

· Record Format – {vfc, stream_cr, stream, <anything else not in DR-2.1>}

· Record Control – {print, <anything else not in DR-2.1>}

DR-2.3.1. It shall issue a Process Error as a log message and halt the gathering of selected VMS attributes, and the creation of an archival package for this VMS file, when these attributes are NOT considered viable for conversion of the original file to a canonical byte stream object. Following this error message, the next source VMS file in the list file will be processed, if possible as defined in DR-6.

DR-3. The PGU-DM file get process shall assign a processing algorithm to the canonical byte stream object type from the original VMS file based on the selected VMS attribute combinations defined in DR-2. It shall run through the processing algorithm to find additional attribute values required as described in DR-1:

DR-3.1. It shall calculate original file size and maximum original record size encountered and store these attribute values into an attribute list.

DR-3.1.1. It shall check for VMS record size errors such as 'record size too big' which can result from improper attributes on binary data, such as stream_lf with CC set.

DR-3.1.1.1. It shall issue a Process Error as a log message and halt the gathering of data, and the creation of an archival package for this VMS file, when VMS indicates the record is too big. Following this error message, the next source VMS file in the list file will be processed, if possible as defined in DR-6.

DR-3.2. It shall calculate whether there is ASCII or BINARY data - and store this attribute value into an attribute list as the ORIGINAL STREAM_TYPE for internal data processing purposes.

DR-3.2.1. It shall also take note of the externally defined file type designator which distinguishes the file type as either 'ascii' or 'binary', and use this value along with the observed types of the data bytes in the original vms file. (see DR-3.4 and DR-3.11)

DR-3.3. It shall contain the following processing algorithms to accommodate transformation of VMS files to canonical byte stream objects for acceptable VMS attribute combinations:

1. Prefix 2-Byte Record Size – prefix one 2-byte, big-endian unsigned integer count value for each record in the original file. Calculate the canonical file size as the summation of the raw-record sizes for each record in a single file, whether fixed or variable length, plus two bytes each for the prefixed 2-byte count value.

2. Append CR-LF - append one suffixed CR-LF 2-byte pair for each record in the original file. Calculate the canonical file size as the summation of the raw-record sizes for each record in a single file, whether fixed or variable length, plus two bytes each for the suffixed CR-LF 2-byte pair. An option to use LF instead of CR/LF shall also be provided.
3. None – treat the original VMS file as a byte stream. The canonical file size equals the original file size and the canonical CRC equals the original CRC.

DR-3.4. It shall assign the processing algorithms with the intent to create one of the following canonical forms for the data, one canonical form per file (canonical forms allow archival storage of VMS file record delimiters):

A. No delimiters BINARY - data are BINARY, containing one or more byte values that are not 7-bit ASCII, or the externally designated file type is identified as BINARY, and there are no NSSDC Archive maintained record separators.

B. Delimiters BINARY - Data are BINARY, containing one or more byte values that are not 7-bit ASCII, or the externally designated file type is identified as BINARY, and there are NSSDC Archive maintained record separators in the form of a prefixed 2-byte count value for each record, accounting for the VMS record range of 0 - 32767.

C. No delimiters ASCII - data are only 7-Bit ASCII, and there are no NSSDC Archive maintained record separators.

D. Delimiters ASCII - data are only 7-Bit ASCII, and there are NSSDC Archive maintained record separators in the form of a suffixed CR-LF 2-byte pair for each record, which allows for a record range of 0 - 32767.

DR-3.5. It shall run through the processing algorithm to find the additional attribute values of canonical CRC and canonical file size. The Canonical Byte Stream Object staging buffer, while the processing conversion occurs, shall have each byte CRC check summed in the order in which they are found to create a Canonical Archive Object CRC:

DR-3.6. It shall recognize that the following VMS attribute value combinations uniquely identify the VMS file as convertible from an original byte stream with possible record differentiation, to a viable canonical byte stream object. It shall assign a desired canonical form to the VMS file and determine which processing algorithms will be used to facilitate the transformation. Refer to Figure 1 below:

Figure 1. Table of Valid VMS Attribute Value Combinations

	Organization
	File Type
	Record Format
	Record Control
	Process Algorithm
	Canonical Form*
	Key*

	sequential
	BINARY
	fixed
	none
	none
	No delimiter, BINARY
	A

	sequential
	BINARY
	variable
	none
	prefix 2-bytes
	Delimiter, BINARY
	B

	sequential
	BINARY
	undefined
	none
	none
	No delimiter, BINARY
	A

	sequential
	ASCII
	fixed
	none
	none
	No delimiter, ASCII
	C

	sequential
	ASCII
	fixed
	carriage_control
	append CR-LF
	Delimiter, ASCII
	D

	sequential
	ASCII
	fixed
	fortran
	append CR-LF
	Delimiter, ASCII
	D

	sequential
	ASCII
	variable
	none
	append CR-LF
	Delimiter, ASCII
	D

	sequential
	ASCII
	variable
	carriage_control
	append CR-LF
	Delimiter, ASCII
	D

	sequential
	ASCII
	variable
	fortran
	append CR-LF
	Delimiter, ASCII
	D

	sequential
	ASCII
	stream_lf
	carriage_control
	append CR-LF
	Delimiter, ASCII
	D

	sequential
	ASCII
	undefined
	none
	none
	No delimiter, ASCII
	C

* Canonical Form and Key Columns are defined in DR-3.4

DR-3.7. It shall recognize that the following VMS attribute value combinations uniquely identify the VMS file as NOT convertible from an original byte stream, and will log a status message error that these values indicate errors in the original VMS file or management block. Refer to Figure 2 below. However there are two exceptions as shown by the Record Control items with asterisks and as shown in Figure 3 below.

DR-3.7.1. It shall issue a Process Error as a log message and halt the gathering of selected VMS attributes, and the creation of an archival package for this VMS file, when these attributes are NOT considered viable for conversion of the original file to a canonical byte stream object. Following this error message, the next source VMS file in the list file will be processed, if possible as defined in DR-6.

Figure 2. Table of NON-Valid VMS Attribute Value Combinations

	Organization
	File Type
	Record Format
	Record Control

	sequential
	BINARY
	Fixed
	carriage_control *1

	sequential
	BINARY
	Fixed
	fortran

	sequential
	BINARY
	Fixed
	print

	sequential
	BINARY
	stream
	none

	sequential
	BINARY
	stream
	carriage_control

	sequential
	BINARY
	stream
	fortan

	sequential
	BINARY
	stream
	print

	sequential
	BINARY
	stream_CR
	none

	sequential
	BINARY
	stream_CR
	carriage_control

	sequential
	BINARY
	stream_CR
	fortran

	sequential
	BINARY
	stream_CR
	print

	sequential
	BINARY
	stream_lf
	none

	sequential
	BINARY
	stream_lf
	carriage_control*2

	sequential
	BINARY
	stream_lf
	fortran

	sequential
	BINARY
	stream_lf
	print

	sequential
	BINARY
	Variable
	carriage_control

	sequential
	BINARY
	Variable
	fortran

	sequential
	BINARY
	Variable
	print

	sequential
	BINARY
	Undefined
	carriage_control

	sequential
	BINARY
	Undefined
	fortran

	sequential
	BINARY
	Undefined
	print

	sequential
	BINARY
	VFC
	none

	sequential
	BINARY
	VFC
	carriage_control

	sequential
	BINARY
	VFC
	fortran

	sequential
	BINARY
	VFC
	print

	sequential
	ASCII
	Fixed
	print

	sequential
	ASCII
	stream
	none

	sequential
	ASCII
	stream
	carriage _control

	sequential
	ASCII
	stream
	fortran

	sequential
	ASCII
	stream
	print

	sequential
	ASCII
	stream_CR
	none

	sequenjtial
	ASCII
	stream_CR
	carriage_control

	sequential
	ASCII
	stream_CR
	fortran

	sequential
	ASCII
	stream_CR
	print

	sequential
	ASCII
	stream_lf
	none

	sequential
	ASCII
	stream_lf
	fortran

	sequential
	ASCII
	stream_lf
	print

	sequential
	ASCII
	Undefined
	carriage_control

	sequential
	ASCII
	Undefined
	fortran

	sequential
	ASCII
	Undefined
	print

	sequential
	ASCII
	Variable
	print

	sequential
	ASCII
	VFC
	none

	sequential
	ASCII
	VFC
	carriage_control

	sequential
	ASCII
	VFC
	fortran

	sequential
	ASCII
	VFC
	print

*1 Data with this case shall be corrected by turning off carriage_control as shown below in DR-3.10, Figure 3.

*2 Data with this case shall be corrected by making delimitation = none and format = undefined and add LFs for each record except at EOF, as shown below in DR-3.10, Figure 3.

DR-3.8. It shall recognize that the CR-LF pair found anywhere in an original record for a file that is to delimit records with a CR-LF byte stream pair are NOT considered viable for conversion of the original file to a canonical byte stream object for ASCII (the original records would be confused – every CR-LF ends a record, and now one or more false records in the canonical byte stream would be interpreted to exist):

DR-3.8.1. It shall issue a Process Error as a log message and halt the gathering of selected VMS attributes, and the creation of an archival package for this VMS file, when these attributes are NOT considered viable for conversion of the original file to a canonical byte stream object. Following this error message, the next source VMS file in the list file will be processed, if possible as defined in DR-6.

DR-3.9. It shall flag the occurrences of the Record Format attribute values {vfc, stream_cr, stream, <anything else not in DR-2.1>} and the Record Control attribute values {print, <anything else not in DR-2.1>} and log a status message error that these are values which have not been tested (because they are not expected to be in NDADS).

DR-3.9.1. It shall issue a Process Error as a log message and halt the gathering of selected VMS attributes, and the creation of an archival package for this VMS file, when these attributes are NOT considered viable for conversion of the original file to a canonical byte stream object. Following this error message, the next source VMS file in the list file will be processed, if possible as defined in DR-6.

DR-3.10. It shall perform the following cleanups for special cases of VMS attribute value combinations. Refer to Figure 3 below:

Figure 3. Table of Cleanups for Special VMS Attribute Value Combinations

	VMS Attribute Combination
	Problem Encountered
	Special Algorithm assigned
	Key

	SequentiaL, fixed format, CC set, ASCII
	CR found at end of every record
	Add LF only for each record, so delimitation is CR/LF
	D

	SequentiaL, fixed format, CC set, BINARY
	CC should not be set, BINARY data could potentially be corrupted
	Set CC = none
	A

	SequentiaL, stream_LF format, CC set, ASCII
	CR found at end of every record
	Add LF only for each record, so delimitation is CR/LF
	D

	SequentiaL, stream_LF format, CC set, BINARY
	During file creation, LFs for each record lost
	make delimitation = none and format = undefined and add LFs for each record except at EOF
	A

	SequentiaL, variable format, CC set, ASCII
	CR found at end of every record
	Add LF only for each record, so delimitation is CR/LF
	D

	SequentiaL, fixed format of 512 bytes per record, CC = none, ASCII
	padding put in last record from previous FTP transfer of file
	avoid padding in last record and change format to undefined
	C

	SequentiaL, fixed format of 512 bytes per record, CC = none, BINARY
	padding put in last record from previous FTP transfer of file
	avoid padding in last record and change format to undefined
	A

DR-3.11. It shall define the Canonical file type (i.e., Canonical STREAM_TYPE), for purposes of Canonical Byte Stream generation and special VMS cleanups, in the following way:

- External File Type= BINARY and Observed File Type= BINARY, then file type = BINARY

- External File Type=binary and Observed File Type=ASCII, then file type = BINARY; issue warning

- External File Type=ASCII and Observed File Type=ASCII, then file type = ASCII

- External File Type=ASCII and Observed File Type= BINARY, then issue error

DR-4. The PGU-DM file get process shall transfer the attribute list and transfer the canonical byte stream object to the make pack process for further verification and creation of an Archival Object. Make Pack will also receive attributes from the package generator and will generate a few others itself.

DR-4.1.PGU-DM shall calculate a CRC check sum over the following attribute list values, all separated by tabs, and terminated with a NULL character (all values shall be in 7-BIT ASCII string form) and transfer them from file get to make pack, verifying the CRC as the data arrives. All the following attribute list values are derived in the file get:

For the ORIGINAL_STREAM_STRUCTURE group:

· STREAM_TYPE – {“7-BIT ASCII", “BINARY”} (Determined from the observed values in the file)

· ORIGINATING_SYSTEM – {"VMS: OpenVMS Alpha OS, Version V6.2-1H3"} (currently 1 VMS platform known to be supported)

· DATE_TIME_CREATED – {<23 byte VMS formatted date-time in the format: dd-mmm-yyyy hh:mm:ss.ms >}

· DATE_TIME_LAST_MODIFIED – {<23 byte VMS formatted date-time in the format: dd-mmm-yyyy hh:mm:ss.ms >}

· FILE_ORGANIZATION – {“sequential”}

· RECORD_FORMAT – {“fixed”, “variable”, “stream_lf”, “undefined”}

· RECORD_CONTROL – {“fortran”, “carriage_control”, “none”}

· STREAM_SIZE_BYTES – {“1”…“4294967296”}

· MAXIMUM_RECORD_LENGTH_BYTES – {“0”…“32767”} (Note: VMS shortens this record size by the number of bytes used to delimit a raw record, therefore, this value includes the delimiter bytes plus the record data)

· FILE_NAME – {VMS filename in the form: <filename>.<ext>;<vers> without the full pathname (DOES NOT CONTAIN): <device>:[<directory>]…}

· CRC_TYPE – {"NSSDC_A:V0"}

· CRC – {<32 BIT CRC in Hexadecimal Format, with Leading Zeros (00000000) if necessary>}

For the CANONICAL_STREAM_STRUCTURE group:

· STREAM_TYPE – {“7-BIT ASCII", “BINARY”} (Determined from the external file type designator; implemented after Nov. 19, 2001, with attribute object version =2)

· STREAM_RECORD_DELIMITER – {"CR-LF", "NONE", "2-BYTE HEADER", "LF", "4-BYTE HEADER"}

· STREAM_SIZE_BYTES – {“1”…“4294967296”}

· MAXIMUM_RECORD_LENGTH_BYTES – {“0”…“32771”}

· CRC_TYPE – {"NSSDC_A:V0"}

· CRC – {<32 BIT CRC in Hexadecimal Format, with Leading Zeros (00000000) if necessary>}

· PROCESSING_REPORT = {<log message string>}

DR-4.2. The selected VMS attributes, after transfer to UNIX, are paired up with their respective parameter names into PVL statements. At this point these PVL formatted statements containing selected VMS attributes shall have each byte CRC check summed in the order that they are added for future verification purposes:

DR-4.2.1. The PVL attributes CRC check summed are inside the STREAM STRUCTURE GROUP of the Attribute Object which includes the ORIGINAL STREAM STRUCTURE and the CANONICAL STREAM STRUCTURE groups, described in the DR section 4.5.

DR-4.2.2. The PVL attributes inside the PACKAGE IDENTIFICATION and SUPPORTING_ATTRIBUTES groups of the Attribute Object, described in the DR section 4.5, are not CRC check summed. These attributes shall be considered sufficiently validated by the archival package delimitation, which bounds the Attribute Object, by the object size.

DR-4.2.3. This Attribute Object CRC shall be stored in PVL format for future verification purposes inside the PACKAGE IDENTIFICATION group.

DR-4.3. PGU-DM shall provide make pack with the following externally created attribute list values, all separated by tabs, and terminated with a NEWLINE character (all values shall be in 7-BIT ASCII string form). They are received externally through the package generator as described in DR-6:

· ARCHIVAL_STORAGE_ID – {<a unique id string>}

· PRIMARY_COLLECTION_ID – {<a string>}

· FORMAT_IDENTIFIER – {<a string>}

· IDENTIFIER_OF_ENCODED_FORMAT - {<a string>}

· ORDERED_APPLIED_ENCODINGS – {<a string>}

· NDADS_VMS_PROJECT_ID – {<a string>}

· NDADS_VMS_DATATYPE – {<a string>}

· NDADS_VMS_ENTRY_ID – {<a string>}

· NDADS_VMS_SUPER_ENTRY_ID – {<a string>}

· RECOMMENDED_FILE_NAME – {<a string>}

· DATA_BEGIN_DATE_TIME – {<a string>}

· DATA_END_DATE_TIME – {<a string>}

DR-4.3.1. In addition, the externally created attribute value ASCII/BINARY FLAG, also separated by tabs, shall be used to compare the file type value calculated in fileget, as described in DR-1.5.

DR-4.4. PGU-DM shall calculate the following attribute values in make pack for inclusion into the Attribute Object:

· ATTRIBUTE_OBJECT_CRC – {<32 BIT CRC in Hexadecimal Format, with Leading Zeros (00000000) if necessary>}

· DATE_TIME_OF_ATTRIBUTE_VALUE_CAPTURE – {<PVL formatted time yyyy-mm-ddThh:mm:ss>}

· DATE_TIME_OF_GENERATION – {<PVL formatted time yyyy-mm-ddThh:mm:ss>}>

DR-4.5. Make pack shall merge the externally created attribute list with the attribute list from file get and the PGU-DM generated values to create a PVL formatted Attribute Object. The format of the Attribute Object shall be identified by the ADID=NSSD0331.

DR-4.5.1. Make pack shall organize the attributes into three categories;

1. PACKAGE_IDENTIFICATION – package identification attributes that apply to the combination of the Attribute Object and the Canonical Stream Object

2. STREAM_STRUCTURE – stream attributes used for documenting the file and record organization of the original and canonical stream objects at the lowest level

3. SUPPORTING_ATTRIBUTES – supporting attributes that apply to the canonical stream object apart from its record organization. The format of the Attribute Object shall be documented and registered.

DR-4.5.2. Make pack shall create the following complete structure of the Attribute Object, with the places of all attributes declared, and the attribute parameters merged into the Attribute Object also. The categories of DR-4.4.1 and OBJECT_TYPE_VERSION make up the whole Attribute Object and are nested in the group NSSDC_ATTRIBUTE_OBJECT. In addition to the VMS attribute list and the externally created attribute list, other attributes with hard-coded values exist in the Attribute Object: The order of attributes within a group, and the order of groups within other groups, is not a fixed requirement. Currently the PGU-DM generates attributes in the order shown below.

· First is the Attribute Object group declaration:

BEGIN_OBJECT = NSSDC_ATTRIBUTE_OBJECT;

· Then comes the attribute object group version, updated with any significant change in organization/content, and as documented in the registered format description:

OBJECT_TYPE_VERSION = "2";

· Then comes the package identification group declaration:

BEGIN_OBJECT = PACKAGE_IDENTIFICATION;

· Then comes the archival storage ID, within the package identification group, which is an identifier assigned by archival storage to distinguish one package from another. This value is one of the externally obtained attribute values:

ARCHIVAL_STORAGE_ID = "234556";

· Then comes the primary collection ID, within the package identification group, which is an identifier of the primary 'data set' of which it is a part. This value is one of the externally obtained attribute values:

PRIMARY_COLLECTION_ID = "ISIS_01";

· Then comes the CRC type, within the package identification group, which identifies the CRC algorithm used for the attribute object CRC, where NSSDC_A:V0 is defined in the registered format documentation. This value is a hard coded attribute value and reflects the CRC generation algorithm used within make pack:

CRC_TYPE = "NSSDC_A:V0";

· Then comes the attribute object CRC, within the package identification group, which is the CRC value that spans the STREAM_STRUCTURE group attributes within this attribute package, and is calculated in make pack: Format is an 8 character PVL string representing a hexadecimal number. This CRC is calculated for all byte values starting from the first byte of the stream structure group declaration to the last byte of the stream structure group ending declaration.

ATTRIBUTE_OBJECT_CRC = "0abc413a";

· Then comes the package identification group ending declaration:

END_OBJECT = PACKAGE_IDENTIFICATION;

· Then comes the stream structure group declaration:

BEGIN_OBJECT = STREAM_STRUCTURE;

· Then comes the original stream structure group declaration, which is a group nested within the stream structure group, and means the originating system where the data are not in NSSDC canonical form. Applies to any system:

BEGIN_OBJECT = ORIGINAL_STREAM_STRUCTURE;

· Then comes the stream type within the original stream structure group. This value is one of the attribute list values obtained from file get: Format is either string "Binary" or string "7-BIT ASCII"

STREAM_TYPE = "BINARY";

· Then comes the originating system within the original stream structure group. This value is one of the attribute list values obtained from file get:

 ORIGINATING_SYSTEM = "VMS: OpenVMS Alpha OS, Version V6.2”;

· Then comes the date time created within the original stream structure group. This value is one of the attribute list values obtained from file get, and the format from file get is converted to a PVL string formatted like a PVL date time:

 DATE_TIME_CREATED = "1989-04-15T02:33:04";

· Then comes the date time last modified within the original stream structure group. This value is one of the attribute list values obtained from file get, and the format from file get is converted to a PVL string formatted like a PVL date time:

DATE_TIME_LAST_MODIFIED = "1999-09-15T23:31:04";

· Then comes the original file organization within the original stream structure group. This value is one of the attribute list values obtained from file get:

FILE_ORGANIZATION = "sequential";

· Then comes the original record format within the original stream structure group. This value is one of the attribute list values obtained from file get:

RECORD_FORMAT = "variable";

· Then comes the original record control within the original stream structure group. This value is one of the attribute list values obtained from file get: :

RECORD_CONTROL = "none";

· Then comes the original file stream size within the original stream structure group. This value is one of the attribute list values obtained from file get:
STREAM_SIZE_BYTES = "2754";

· Then comes the original maximum record size within the original stream structure group. This value is one of the attribute list values obtained from file get:
MAXIMUM_RECORD_LENGTH_BYTES = "0";

· Then comes the original file name within the original stream structure group. This value is one of the attribute list values obtained from file get:
FILE_NAME = "DEUA81218.DAT;1";

· Then comes the CRC type for the original CRC calculated over the original file within the original stream structure group. This value is one of the attribute list values obtained from file get:
CRC_TYPE = "NSSDC_A:V0";

· Then comes the CRC for the original file within the original stream structure group. This value is one of the attribute list values obtained from file get: [8 character hex formated string]
CRC = "1ad5a0de";

· Then comes the date time of attribute values capture within the original stream structure group. This value is calculated in make pack and is the date-time this Attribute Object is created:[PVL date formatted PVL string]
DATE_TIME_OF_ATTRIBUTE_VALUE_CAPTURE = "1999-09-15T23:31:04 ";
· Then comes the original stream structure group ending declaration:

END_OBJECT = ORIGINAL_STREAM_STRUCTURE;

· Then comes the canonical stream structure group declaration. This group represents attribute values for the resulting canonical form. BEGIN_OBJECT = CANONICAL_STREAM_STRUCTURE;

· Then comes the stream type within the canonical stream structure group. This value is one of the attribute list values obtained from file get:

STREAM_TYPE = "BINARY";

· Then comes the stream record delimiter within the canonical stream structure group. This value is one of the attribute list values obtained from file get and identifies the NSSDC defined delimiter to be used to recognize record boundaries:
STREAM_RECORD_DELIMITER = "2-BYTE HEADER";

· Then comes the canonical file stream size within the canonical stream structure group. This value is one of the attribute list values obtained from file get and is the total number of bytes in canonical stream, including any NSSDC defined record delimiters:
STREAM_SIZE_BYTES = "2856";

· Then comes the canonical maximum record size within the canonical stream structure group. This value is one of the attribute list values obtained from file get and is the maximum record size, including any NSSDC defined record delimiters:
MAXIMUM_RECORD_LENGTH_BYTES = "56";

· Then comes the CRC type for the canonical CRC calculated over the canonical file within the canonical stream structure group. This value is one of the attribute list values obtained from file get:
CRC_TYPE = "NSSDC_A:V0";

· Then comes the CRC for the canonical file within the canonical stream structure group. This value is one of the attribute list values obtained from file get:
CRC= "1ad5a0de ";

· Then comes the recommended file name within the canonical stream structure group, recommended at the time of canonical stream generation, to be used when providing data to consumers. This file name should be usable across a variety of platforms and file systems. This value is one of the externally obtained attribute values:
RECOMMENDED_FILE_NAME = "DEUA81218.DAT";

· Then comes the processing report determined while transforming the original file to its canonical form within the canonical stream structure group. This value is one of the attribute list values obtained from file get:
PROCESSING_REPORT = "B-OK: binary file with variable format";

· Then comes the date time of attribute values generation within the canonical stream structure group. This value is calculated in make pack and is the date-time this Attribute Object is generated:
DATE_TIME_OF_GENERATION = "1999-09-15T23:31:04";

· Then comes the format identifier within the canonical stream structure group, an NSSDC accepted form providing a unique identifier, called the Authority and Description Identifier (ADID), of the format description for the canonical stream object. It does not include any NSSDC maintained encoding (e.g., compression) applied to the format. This value is one of the externally obtained attribute values:
FORMAT_IDENTIFIER="NSSD5132";

· Then comes the canonical stream structure group ending declaration:

END_OBJECT = CANONICAL_STREAM_STRUCTURE;

· Then comes the stream structure group ending declaration:

END_OBJECT = STREAM_STRUCTURE;

· Then comes the supporting attributes group declaration:

BEGIN_OBJECT = SUPPORTING_ATTRIBUTES;

· Then comes the ordered applied encoding attribute, within the supporting attributes group, as a PVL sequence data type within a quoted string. For example: "(base64,gzip)" ; currently allowed values are 'tar', 'gzip', and 'none'. If there is no encoding, the value is 'none'. This is one of the externally obtained attribute values:

ORDERED_APPLIED_ENCODINGS = "(tar,gzip)";

· Then comes the NDADS VMS project identifier attribute, within the supporting attributes group; get from input file-optional; This value is one of the externally obtained attribute values:

NDADS_VMS_PROJECT_ID = “none";

· Then comes the NDADS VMS data type attribute, within the supporting attributes group; get from input file-optional; This value is one of the externally obtained attribute values:

NDADS_VMS_DATATYPE = "none";

· Then comes the NDADS VMS entry ID attribute, within the supporting attributes group, get from input file-optional; This value is one of the externally obtained attribute values:

NDADS_VMS_ENTRY_ID = "none";

· Then comes the NDADS VMS super entry ID attribute, within the supporting attributes group, get from input file-optional; This value is one of the externally obtained attribute values:

NDADS_VMS_SUPER_ENTRY_ID = "none";

· Then comes the DATA BEGIN DATE TIME attribute, within the supporting attributes group, get from input file-optional; This value is one of the externally obtained attribute values:

DATA_BEGIN_DATE_TIME = “n/a”;

· Then comes DATA END DATE TIME attribute, within the supporting attributes group, get from input file-optional; This value is one of the externally obtained attribute values:

DATA_END_DATE_TIME = “n/a”;

· Then comes the supporting attributes structure group ending declaration:

END_OBJECT = SUPPORTING_ATTRIBUTES;

· Then comes the NSSDC attributes structure group ending declaration:

END_OBJECT = NSSDC_ATTRIBUTE_OBJECT;
DR-4.6.PGU-DM shall convert the original VMS file to the canonical form and transfer the new canonical object from file get to make pack:

DR-4.6.1. It shall convert the original form to the canonical form using algorithms described in DR-3 one record at a time.

DR-4.6.2. It shall calculate the canonical CRC check sum and canonical stream size while processing takes place to verify that the algorithm used for creating the canonical byte stream one record at a time matches the previous calculation described in DR-3.

DR-4.6.3. It shall calculate the canonical CRC check sum and canonical stream size in the make pack while transfer of the canonical byte stream object takes place to verify that the transfer is correct.

DR-4.7. PGU-DM shall maintain a byte count of the total original file bytes and the resulting total package bytes, and generate a status message every 1073741824 bytes which indicates current incremental performance:

DR-4.7.1. It shall calculate the performance with the formula:

· <original file bytes processed this snapshot> divided by <time between this and last snapshot> = <current PGU-DM performance> (Kbytes / sec)

DR-4.8. It shall maintain a count of the input file entries processed (either correctly or incorrectly) and issue an error message and halt operation if the input list file has zero source files.

DR-5. The PGU-DM make pack process shall merge the Archival Object with the Canonical Byte Stream Object into an Archival Package, comprising a single file on UNIX.

DR-5.1. It shall combine the Archival Object with the Canonical Byte Stream Object into a single file, separating the objects with SFDU labels containing identifiers of the formats for each contained object, the length of each object, and the class assigned to each object. The SFDU construction rules is ISO 12175, is available for reference, and is out of the scope of this document:

DR-5.1.1. It shall derive the SFDU label identifier for the format of the Canonical Byte Stream Object from one of the externally obtained attribute values.

DR-5.1.2. It shall use byte counts for delimitation of each object, specifically the Attribute Object size and the Canonical Byte Stream Object size.

DR-5.1.3. It shall designate the Attribute Object to be class 'K' with ADID=NSSD0331 and canonical object is class 'I' with ADID as obtained from externally obtained attribute values. The overall package is in container class 'Z' with ADID=CCSD0001.

DR-5.1.4. It shall creates the file as specified in its target name and will calculate the sizes of the SFDU LVO class ‘Z’, ‘K’, and ‘I’ objects to create a single FILE SFDU with all internal delimitation intact. The LVO objects are binary delimited to accommodate the wide range of possible NSSDC data.

DR-5.2. It shall place the SFDU package into the path/file location given by the input file.

DR-5.2.1. It shall expect the UNIX directory specified to be already created, and will not create a new one.

DR-5.2.1.1. It shall issue a Process Error as a log message and halt the creation of an archival package, when the UNIX directory specified to be already created cannot be found. Following this error message, the next source VMS file in the list file will be processed, if possible as defined in DR-6

DR-5.3. It shall attempt to create a file to store the new package contents, and will not continue if there is NOT enough disk space or an error in processing takes place.

DR-5.3.1. It shall issue a Process Error as a log message and halt the creation of an archival package, when the UNIX directory specified to be already created cannot be found or a processing error takes place. Following this error message, the next source VMS file in the list file will be processed, if possible as defined in DR-6. .

DR-5.3.2. It shall erase the file if processing cannot be completed.

DR-5.3.3. It shall recognize warnings, but not halt processing

DR-5.4. It shall prepare for the next source file candidate to be processed into an Archival Package once the newly created Archival Package is stored to the target storage area. Then it shall continue as described in DR-6.

DR-6. The PGU-DM shall operate with a repeating process with the following major functions and characteristics:

DR-6.1. It shall make use of the following five types of files:

1. Setup file – contains the data that specifies the source machine where the file get process will be invoked and run, and the target machine where the make pack process will be invoked and run. The format for the setup file is internal to the PGU-DM and not expected to be human-readable.

2. List file – contains the data that specifies a table containing each source file which is a candidate to be processed into an Archival Package, the target Archival Package file to be created, plus the following externally generated attribute values. The format for the list file is one row of items per source file candidate, separated by tabs and terminated with one LF per row:

a. Source filename with full path [A string which represents a valid file name on the source VMS platform.]

b. Target filename with full path [A string which represents a valid file name on the destination UNIX machine.]

c. ARCHIVAL_STORAGE_ID – {<a unique id string>}

d. PRIMARY_COLLECTION_ID – {<a string>}[NSSDC unique ID per AIM file]

e. FORMAT_IDENTIFIER – {<a string>}][ADID representing the format of the data format without encodings applied]

f. IDENTIFIER_OF_ENCODED_FORMAT– {<a string>}[ADID representing the format of the data format with all encodings applied]

g. ORDERED_APPLIED_ENCODINGS – {<a string>} [Valid values are a comma separated list which may include the list items: NONE, TAR, or GZIP]

h. NDADS_VMS_PROJECT_ID – {<a string>} [Corresponding to field in Transfer Data Base.]

i. NDADS_VMS_DATATYPE – {<a string>}[Corresponding to field in Transfer Data Base.]

j. NDADS_VMS_ENTRY_ID – {<a string>}[Obtained from the NDADS system.]

k. NDADS_VMS_SUPER_ENTRY_ID – {<a string>}[Obtained from the NDADS system.]

l. RECOMMENDED_FILE_NAME – {<a string>}[A string which represents a valid file name, preferably one which is valid across a number of file systems and platforms.]

m. ASCII/BINARY FLAG - {<a string>}[A string which identifies the intended file type, either “ascii”, “binary”, or the value can be NULL.]

n. DATA_BEGIN_DATE_TIME – {<a string>}[A string which represents the begin date-time for the data, or a NULL value. If the value is NULL, it shall be replaced with the string “n/a”]

o. DATA_END_DATE_TIME – {<a string>}[A string which represents the end date-time for the data, or a NULL value. If the value is NULL, it shall be replaced with the string “n/a”]

3. Output files – created and updated by the PGU-DM, comprised of two files, an <output log file name> which contains one line per input file line indicating whether the associated package was successfully created and an <output status file name> which contain a running log of all.

4. Email file – contains the e-mail addresses of recipients which will be notified every time the PGU-DM terminates its operation, whether normally or because of unrecoverable errors. This file is not passed through the input parameter list, but is named “email.lst”. The format for the email file is one line per email address, and if the user wishes to suppress this feature, they should omit the file or keep the file empty.

5. Behavioral command file – contains no data, but its presence causes make pack, when writing out an archival package, to overwrite a package that exists in the target directory. This file, named “dont_skip.cmd", is not passed through the input parameter list. If this file does not exist, then when a package file name is encountered when attempting to write out the package, an error message occurs and the write is bypassed so that the existing file is not touched.

DR-6.2. It shall start up with four input parameters on UNIX command line, in the form “packgen <setup file path> < input file path> log file path> <status file path>, that includes the following information:

DR-6.2.1. It shall expect a setup file which contains the data that specifies the source machine where the file get process will be invoked and run, and the target machine where the make pack process will be invoked and run.

DR-6.2.1.1. The setup file shall be created through a secondary mode the PGU-DM may be invoke in, by not using the three input parameters as input, in the form “packgen”.

DR-6.2.2. It shall expect the input list file which is a table containing externally derived information for each source file which is a candidate to be processed into an Archival Package.

DR-6.2.2.1. The input list file shall have a minimum of one source file candidate.

DR-6.2.3. It shall expect a log file path and a status file path

DR-6.2.3.1. If the log or status files exist, they will be appended and not cleared before adding any new log information.

DR-6.3. It shall initialize, invoking the make pack and file get processes as specified in the setup file, create / append the log and status files, and begin to pipe the contents of the list file to make pack.

DR-6.4. It shall maintain the two log file and the status, without buffering information.

DR-6.5. It shall have the make pack parse the input file, one item at a time, and then create the new file for the Archival Package. Then it shall access the file get and retrieve the internally created attribute values and canonical byte stream for merging into an Attribute Object and transfer into the Data Object of the Archival Package, respectively.

