Package Splitter Utility Startup and Operation

Updates:

- Updated, version 4.1.1, 2000-09-11, Added Attribute and Data Object File Overwrite Option

- Updated, version 4.1, 2000-04-05
- Created, version 0.6, 1999-10-18

Table of Contents:

1. Overview

2. Startup and Operation

3. Message Codes

4. Troubleshooting Guide

1. Overview

The Package Splitter Utility (PSU) Version 4.1.1 starts from Sun or Dec Alpha UNIX through a Telnet session to split archival package files on Sun UNIX into separate attribute and canonical object file pairs, according to the Splitter Utility Requirements, Version 4.1.1, 2000-09-11 (PSUR).

This document describes how to use the PSU. It is expected that the reader should be able to do the following tasks after reading this document:

1. Start it up with the proper input parameters

2. Operate it effectively by understanding how it works in your environment

3. Analyze its output to understand what it accomplished with the data it has been given

4. Troubleshoot problems as they arise

2. Startup and Operation

Startup and Operation Table of Contents:

SO-1. PSU normal startup (and quick startup reference)

SO-2. PSU list file format

SO-3. PSU status messages

SO-1. The PSU operates as a Sun UNIX program running from a terminal via Telnet. The user should start a Telnet session and call the PSU program by its executable (a program or shell script may also be created which does the following equivalent invocation).

SO-1.1. Quick Startup: To process packages into attribute and data file pairs, from the UNIX terminal type (detailed description in SO-1.3):

$ <splitter path> <input list file path> <log file path> <status file path>
SO-1.2. PSU accesses each package file from a UNIX machine and splits it into attribute and data file pairs on the same UNIX machine. Filenames are to be specified by full pathname, where the directories already exist. No alteration of the package file on the source machine occurs. An input list file containing a table of package files and other information is the input to the PSU.

SO-1.3. Startup Explanation: PSU starts from an executable named splitter. Do not type this at your terminal prompt (or call it from your program) without inputting the three required input parameters to this executable. If you do simply type ‘splitter’ without parameters it will return the following usage message, which shows exactly what you should do to start the PSU in its normal operation mode:

$ splitter <input list file path> <log file path> <status file path>

where:

splitter – the executable name of the PSU. You might have to actually type in the full pathname. For example, if the full pathname is /ndadse/home/userid/dmu/bin/splitter, then use this in place of splitter at the command line.

SO-1.3.1. Hint: Look in the directory path where the splitter executable resides and determine the full directory path by typing:

$ pwd
For example, if the output of the pwd command is /ndadse/home/userid/dmu/bin, then when you run the executable, type:

$ /ndadse/home/userid/dmu/bin/splitter <input list file path> <log file path> <status file path>
<input list file path> - the first parameter is the complete path to an input list file which is a table containing externally derived information for each package file that is a candidate to be split into attribute and data file pairs. The format of this <input list file path> is given in SO-2.

For example, if the full path where the input list file resides is /ndadse/home/userid/dmu/listfiles/listfile.lst then when you run the executable (assuming the examples up to this point are true), type:

$ /ndadse/home/userid/dmu/bin/splitter \

 /ndadse/home/userid/dmu/listfiles/listfile.lst \

 <log file path> <status file path>
<log file path> - the second parameter is the complete path to a log file which is created by the PSU. It will be overwritten if it exists. Each line output into this log file corresponds to one entry line in the input list file.

For example, if the full path where the log file resides is /ndadse/home/userid/dmu/logs/out.log then when you run the executable (assuming the examples up to this point are true), type:

$ /ndadse/home/userid/dmu/bin/splitter \

 /ndadse/home/userid/dmu/listfiles/listfile.lst \

 /ndadse/home/userid/dmu/logs/out.log \

 <status file path>
<status file path> - the third and final parameter is the complete path to a status file which is created by the PSU. It will be overwritten if it exists. Output to this file corresponds to all messages, including errors, in the order that they are created by the PSU. Messages output to the log file are also output here.

For example, if the full path where the error / status file resides is /ndadse/home/userid/dmu/logs/out.err then when you run the executable (assuming the examples up to this point are true), type:

$ splitter \

 /ndadse/home/userid/dmu/listfiles/listfile.lst \

 /ndadse/home/userid/dmu/logs/out.log \

 /ndadse/home/userid/dmu/logs/out.err
Note: the \ terminator above is valid in UNIX – it extends the command length at the Telnet terminal. You may omit the \ terminator.

SO-2. The PSU expects an input list file in the form of a table. The table contains identification of each candidate package file to be split into attribute and data file pairs, the target data file and attribute file names to be created, plus the Archival ID for each package. Archival packages are self-describing – they contain this Archival ID in the Attribute Object, and both values are checked to verify a match. The format for the input list file is one row of items per package file candidate, separated by tabs and terminated with one LF per row:

1. Package Filename - with full path [A string which represents a valid file name on the UNIX machine.]

2. Target Data Filename - with full path [A string which represents a valid file name on the UNIX machine.]
3. Target Attribute Object Filename - with full path [A string which represents a valid file name on the UNIX machine.]

4. ARCHIVAL_STORAGE_ID – {<a unique id string>}

SO-2.1. The PSU optionally can be made to toggle between overwriting existing target attribute and data files, and not permitting a target file overwrite. The default option is always to not permit an overwrite of target attribute and data files. To specify an overwrite of these files, include the command file overwrite_psu_targetfiles.cmd in the same directory as the splitter executable.

SO-3. The PSU sends output for status, warnings, and errors to three separate devices, all with their own function. PSU error handling operates the same as the Data Migrator Utility (DMU). It is these output messages that report to the user how the PSU operated on a given package list, input via the input list file. The three outputs are to:

1. The console’s screen – {SUCCESS, FAILURE}; either of these strings appear at completion of the DMU execution in normal mode.

2. The log file – {<status for each corresponding data file identified in the input file>}; this is an error / status code as described in section 3. Message Codes. Upon normal PSU operation, and a return of “SUCCESS”, there will be one log entry per Package file identified in the input file.

3. The status file - {<status of any kind>}; this is an error / status code as described in section 3. Message Codes. As error / status conditions occur, their messages all get put here. There will generally be an equal or greater number of messages here than in the log file. These include all the messages in the log file plus any extras. There are normal status, warning, and error messages that will end up here – and a SUCCESS only means that the PSU operated from start to finish properly and did not have to halt in mid-process.

These output messages, and the order in which they are seen at the three separate output devices, determine the PSU overall success. Section 3. Message Codes provides a complete listing of error / status codes, what they mean, and when they are expected to occur in relation to the PSU Lifecycle illustrated in Figure 1. Error / status codes will only fire during a designated phase in the PSU Lifecycle. Figure 1 illustrates the PSU lifecycle:

Figure 1. PSU Lifecycle

Table 1 lists the general stages of PSU operation, according to this PSU lifecycle:

Stage Number
Stage Name
Stage Type
Stage Description

1
Setup Parameters
Single (goes to 2 or 5)
Ready input file, interpret setup file, create output files

2
Get Input Package Item
Cyclic (goes to 3 or 5)
Parse input list file to get package file item candidate (SO-2)

3
Validate Package
Cyclic (goes to 4 or 5)
Validate package file on UNIX machine

4
Split Package
Cyclic (goes to 2 or 5)
Split package into data and attribute file pairs

5
End Utility
Single
Cleanup, final status report, e-mail notification

Table 1: PSU General Stages

In Table 1, the general stages of PSU operation each have a type and functional description that run in either type Single or type Cyclic. These relate to how you may expect to see error / status codes. Stages 1 and 5 and their respective error / status codes will fire only once, when needed, during operation of the PSU. In contrast, Stages 2, 3, and 4 and their respective error / status codes will fire once for every input item successfully parsed from the input list file, input as parameter 1 (described in SO-1.3). Refer to section 3. Message Codes for more a detailed reference of error / status messages and what they mean.

3.Message Codes

Message Codes Table of Contents:

EC-1. PSU message code overview

EC-2. PSU message code grouping according to general stages

EC-3. PSU message code inventory

EC-1. The PSU performs complete logging and user notification of normal operational status, error codes, and statistics. There are the following four message types:

1. Normal processing messages, which specify the current input package file being processed.

2. Normal statistical messages, which specify the current performance of the PSU at about 1 Gigabyte intervals and specify the overall processing performance at the end of a session. A session is defined as the time it takes to process an entire input list file.

3. Process Errors, where conditions while processing are found that halt the process. Following this error message, the next source process file in the list file will be processed, if possible.

4. Utility Errors, where conditions in the program environment cause the PSU to stop operation for the session. In this case, restart of the PSU must take place.

EC-2. The PSU generates Error Messages as appropriate and outputs all of them into the status file at <status file path>. The messages will identify which item was being processed when the condition arose and will indicate what condition arose. The format of these messages shall be:

<unique archive id><tab><status number><tab><status_message - includes status_id, status_type, message_description><CR/LF>

where:

<unique archive id> is the unique id string passed into the PSU

<status number> is 0 for success and non-zero if not

<status message> is log codes, plus human readable text giving meaning of status number

where, in <status message> there is:

<status id> is ASCII status message identifier which includes the status number

<status type> is PASS:, WARN:, or ERR:

<message description> is human readable text giving meaning of status number

The actual status codes each contain tabs separating the <unique archive id>, <status number> and <status message>. A CR/LF pair delimits each status code line. For example, the following is an actual code from a run:

000001
0
SPL-P_OK PASS: "package_file" into "data_file" and "attribute_file"

Table 2 is a breakdown of the error / code elements for the previous example
Element
Description

<ARCH_ID#> - will likely be something like 0000001
<unique archive id>

The ‘0’
<status number>

…status message…

SPL-P_OK
<status id>

PASS:
<status type>

"<package file>" into "<data file>" and "<attrib file>"
<status message>

Table 2: Elements in Status Code for Example in EC-2

EC-3. Table 3 is the PSU error / status code grouping according to the general stages in the operational lifecycle (there are 36 error codes and 3 normal codes). The perspective for Table 3 is that from the PSU lifecycle stages. Refer to Table 4 in EC-4 for a full inventory of codes with their format, and how they are output to notify the user.

Additional information is contained in the <status id>. Within the Status ID, the symbols 'P', 'E', and "FE' are found. Their meaning is as follows:

· 'P' means 'pass' and the package was processed successfully

· 'E' means 'Error' and it stops that particular package processing but the PSU continues to other packages

· 'FE' means 'Fatal Error' and it stops the PSU
Operation
Status Number
Status ID
Error / Status Code Description

STAGE 1: Setup Parameters

Access input list file
1
SPL-FE_1
Input list file name or path incorrect / not found

Create log file (output it one entry per item in list file)
2
SPL-FE_2
Log file name or path incorrect / not creatable

Create status file (all messages go here)
3
SPL-FE_3
Status file name or path incorrect / not creatable

STAGE 2: Get Input Package Item

Parse through input list file, one item at a time
4
SPL-E_4
Input list file appears to be incorrectly formatted

5
SPL-E_5
Input list file appears to be incorrectly formatted

6
SPL-E_6
Input list file appears to be incorrectly formatted

7
SPL-E_7
Input list file appears to be incorrectly formatted

8
SPL-E_8
Input list file appears to be incorrectly formatted

9
SPL-E_9
Input list file appears to be incorrectly formatted

10
SPL-E_10
Input list file appears to be incorrectly formatted

36
SPL-E_36
Input list file appears to be incorrectly formatted

STAGE 3: Validate Package

Try to open package file
11
SPL-E_11
File does not exist or the internal package format is invalid

Check Attribute Object format and extract needed values for validation purposes
12
SPL-E_12
Attribute Object not in package - the internal package format is invalid

13
SPL-E_13
Attribute Object / Data Object pair not in package - the internal package format is invalid

32
SPL-E_32
Attribute Object data has unparsable format

14
SPL-E_14
Data Object not in package - the internal package format is invalid

16
SPL-E_16
Expected data with package attribute information not found - the internal package format is invalid

19
SPL-E_19
Expected data with package attribute information not found - the internal package format is invalid

Verify that Archive ID from input file matches value in Archive Object

22
SPL-E_22
Attribute Object value for Archive ID not equal to value from list file for the package

26
SPL-E_26
Attribute Object value for Attribute Object Version not equal to “1”, the expected value

27
SPL-E_27
Attribute Object value for CRC Type not equal to “NSSDC_A:V0”, the expected value

28
SPL-E_28
Attribute Object value for CRC Type not equal to “NSSDC_A:V0”, the expected value

33
SPL-E_33
Attribute Object value for Canonical Data Object CRC not found

34
SPL-E_34
Attribute Object value for Canonical Data Object byte size not found

STAGE 4: Split Package

Issue passing status message for package

0
SPL-P_OK
PACKAGE SUCCESSFULLY SPLIT

Issue interim performance report
0
SPL-P_IREP
Interim status / performance report for every 1,073,741,824 source file bytes successfully processed

Create attribute object file
15
SPL-E_15
Attribute Object file path may be invalid or the device is inaccessible

17
SPL-FE_17
Could not add more data to the attribute file – possibly device has run out of memory

Verify that expected CRC matches calculated CRC for attribute object file

23
SPL-E_23
Attribute Object value for Attribute Object CRC not equal to the calculated value

Create data object file
18
SPL-E_18
Data Object file path may be invalid or the device is inaccessible

20
SPL-FE_20
Could not add more data to the canonical data file – possibly device has run out of memory

Verify that expected CRC matches calculated CRC for data object file

24
SPL-E_24
Attribute Object value for Canonical Data Object CRC not equal to the calculated value

Verify that expected byte size matches calculated CRC for data object file

25
SPL-E_25
Attribute Object value for Canonical Data Object byte size not equal to the calculated value

STAGE 5: End Utility

Issue final performance report
0
SPL-P_TREP
Final status / performance report fired at end with general status “SUCCESS”

Highly unexpected internal error
21
SPL-FE_21
Not expected – extremely unlikely event – internal error

29
SPL-FE_29
Not expected – extremely unlikely event – internal error

30
SPL-FE_30
Not expected – extremely unlikely event – internal error

31
SPL-FE_31
Not expected – extremely unlikely event – internal error

35
SPL-FE_35
Not expected – extremely unlikely event – internal error

Table 3: Status/Error Code Mapping to Lifecycle Stages

EC-4. The following is a complete inventory of PSU error / status codes (there are 39 codes, 3 with id 0). The perspective for Table 4 is that there is a found error / status code which needs explanation of what it means. These entries are in a different order than Table 3.

The first entries, labeled “Codes that are output into the LOG FILE…” are the only messages output to the log file, one per input item. A “SUCCESS” output to the console screen indicates that only these messages, plus Error and Statistical Messages of type 1, 2, and 3 (described in EC-1) are output to the status file. Remember, for each source file, if it doesn’t show a status code of 0<tab>SPL-P_OK PASS: "<package file>" into "<data file>" and "<attribute file>", it has failed, even though an output of “SUCCESS” appears at the end of the session. The “SUCCESS” output code shows that the PSU has operated normally only.

A “FAILURE” output to the console screen indicates that the input list file was not completely processed, and there is likely less than one item in the log file per input item and an error code trail in the status file. The first entries in bold, plus all the rest in Table 4., are output to the status file.

Note: Status numbers are defined as zero (0) for normal and non-zero for an error and are unique.

Exception: Code message <tab>3<tab>SPL-FE_3 ERR: could not create status file "file name" does not go into the status file, because the file is invalid…it is output to the console screen after a FAILURE message and a program return code of –1.

Status Number
Status ID
Status Type
Status Message
Description

Codes that are output into the LOG FILE and STATUS FILE:

0
SPL-P_OK
PASS:
"package file" into "data file" and "attrib file"
PACKAGE SUCCESSFULLY SPLIT

11
SPL-E_11
ERR:
could not access / parse package file "file name"
File does not exist or the internal package format is invalid

12
SPL-E_12
ERR:
could not find attribute object in package file "file name"
Attribute Object not in package - the internal package format is invalid

13
SPL-E_13
ERR:
could not find attribute / data object pair in package file "file name"
Attribute Object / Data Object pair not in package - the internal package format is invalid

14
SPL-E_14
ERR:
could not find data object in package file "file name"
Data Object not in package - the internal package format is invalid

15
SPL-E_15
ERR:
could not create attribute object data file "file name"
Attribute Object file path may be invalid or the device is inaccessible

16
SPL-E_16
ERR:
no data in attribute object for package "file name"
Expected data with package attribute information not found - the internal package format is invalid

18
SPL-E_18
ERR:
could not create object data file "file name"
Data Object file path may be invalid or the device is inaccessible

19
SPL-E_19
ERR:
no data in data object for package "file name"
Expected data with package attribute information not found - the internal package format is invalid

22
SPL-E_22
ERR:
archive ID "ID#" from input list file does not match arch id for package "file name"
Attribute Object value for Archive ID not equal to value from list file for the package

23
SPL-E_23
ERR:
archive object CRC for package "file name" does not match calculated value
Attribute Object value for Attribute Object CRC not equal to the calculated value

24
SPL-E_24
ERR:
canonical object CRC for package "file name" does not match calculated value
Attribute Object value for Canonical Data Object CRC not equal to the calculated value

25
SPL-E_25
ERR:
canonical object file size for package "file name" does not match calculated value
Attribute Object value for Canonical Data Object byte size not equal to the calculated value

26
SPL-E_26
ERR:
NSSDC attribute object group type "1" not found in package "file name"
Attribute Object value for Attribute Object Type not equal to “1”, the expected value

27
SPL-E_27
ERR:
archive object CRC type "NSSDC_A:V0" not found in package "file name"
Attribute Object value for CRC Type not equal to “NSSDC_A:V0”, the expected value

28
SPL-E_28
ERR:
canonical object CRC type "NSSDC_A:V0" not found in package "file name"
Attribute Object value for CRC Type not equal to “NSSDC_A:V0”, the expected value

32
SPL-E_32
ERR:
attribute object had unexpected format in package "file name"
Attribute Object data has unparsable format

33
SPL-E_33
ERR:
canonical object CRC for package "file name" not found
Attribute Object value for Canonical Data Object CRC not found

34
SPL-E_34
ERR:
canonical object file size for package "file name" not found
Attribute Object value for Canonical Data Object byte size not found

Codes which are output to the STATUS FILE, when needed:

0
SPL-P_IREP
PASS:
INTERIM REPORT - PROCESSED ~"num" MORE PACKAGE BYTES IN ~"sec" SECs AT "rate" KBYTES/SEC
Interim status / performance report for every 1,073,741,824 source file bytes successfully processed

0
SPL-P_TREP
PASS:
FINAL REPORT - PROCESSED "num" TOTAL PACKAGE BYTES IN "sec" TOTAL SECs AT "rate" KBYTES/SEC
Final status / performance report fired at end with general status “SUCCESS”

1
SPL-FE_1
ERR:
could not access file list "file name"
Input list file name or path incorrect / not found

2
SPL-FE_2
ERR:
could not create log file "file name" (same lines as list file)
Log file name or path incorrect / not creatable

3
SPL-FE_3
ERR:
could not create status file "file name"
Status file name or path incorrect / not creatable

4
SPL-E_4
ERR:
failed parsing input list file for package filename
Input list file appears to be incorrectly formatted

5
SPL-E_5
ERR:
failed parsing input list file for output data filename
Input list file appears to be incorrectly formatted

6
SPL-E_6
ERR:
failed parsing input list file for output data filename
Input list file appears to be incorrectly formatted

7
SPL-E_7
ERR:
failed parsing input list file for output attribute object filename
Input list file appears to be incorrectly formatted

8
SPL-E_8
ERR:
failed parsing input list file for output attribute object filename
Input list file appears to be incorrectly formatted

9
SPL-E_9
ERR:
failed parsing input list file for package archival id
Input list file appears to be incorrectly formatted

10
SPL-E_10
ERR:
failed parsing input list file for package archival id
Input list file appears to be incorrectly formatted

17
SPL-FE_17
ERR:
could not write a char to attribute file "attrib file name" for package "package file name"
Could not add more data to the attribute file – possibly device has run out of memory

20
SPL-FE_20
ERR:
could not write a char to data file "data file name" for package "package file name"
Could not add more data to the canonical data file – possibly device has run out of memory

21
SPL-FE_21
ERR:
went to unexpected state in algorithm
Not expected – extremely unlikely event – internal error

29
SPL-FE_29
ERR:
went to unexpected state in algorithm
Not expected – extremely unlikely event – internal error

30
SPL-FE_30
ERR:
went to unexpected state in algorithm
Not expected – extremely unlikely event – internal error

31
SPL-FE_31
ERR:
went to unexpected state in algorithm
Not expected – extremely unlikely event – internal error

35
SPL-FE_35
ERR:
went to unexpected state in algorithm
Not expected – extremely unlikely event – internal error

36
SPL-FE_36
ERR:
failed parsing input list file for package filename
Input list file appears to be incorrectly formatted

Table 4: Status/Error Code Inventory

4. Troubleshooting Guide

Troubleshooting Guide Table of Contents:

TG-1. PSU Error Code Meanings

TG-1. The PSU outputs all status codes to the <status file path> log file. The following are test suite cases that cover a wide range of errors that might be found in the status file upon completion of a run. Remember: While a return of FAILURE means an obvious error, you must analyze the log file on a file by file basis to determine if one or more packages could not be split.

Case 1:

Description:

- user enters bad filename for input list file when starting utility

Procedure:

- invoke utility with a mispelled or made-up input list filename

Errorlog Returncode:

- 1<tab>SPL-FE_1 ERR: could not access file list "file name"<cr/lf>

Result: ok

- typed: splitter /tmpo/stage22.spl out.log out.err

- return: FAILURE, out.err

- <tab>1<tab>SPL-FE_1 ERR: could not access file list "/tmpo/stage22.spl"<cr/lf>

Case 2:

Description:

- user enters bad filename for log file when starting utility, or device not accessable

Procedure:

- invoke utility with a bad log filename

Errorlog Returncode:

- 2<tab>SPL-FE_2 ERR: could not create log file "file name" (same lines as list file)<cr/lf>

Result: ok

- typed: splitter stage22.spl /tempo/out.log out.err

- return: FAILURE, out.err

- <tab>2<tab>SPL-FE_2 ERR: could not create log file "/tempo/out.log" (same lines as list file)<cr/lf>

Case 3:

Description:

- user enters bad filename for status file when starting utility, or device not accessable

Procedure:

- invoke utility with a bad status filename

Errorlog Returncode:

- 3<tab>SPL-FE_3 ERR: could not create status file "file name"<cr/lf>

Result: ok

- typed: splitter stage22.spl out.log /tempo/out.err

- return: FAILURE, stdout

- SPL-FE_3 ERR: could not create status file "/tempo/out.err"

Case 4:

Description:

- input list file parameter package filename has too many characters

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_36.dat

Errorlog Returncode:

- 36<tab>SPL-E_36 ERR: failed parsing input list file for package filename<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_36.dat out.log out.err

- return: FAILURE, out.err

- <tab>36<tab>SPL-E_36 ERR: failed parsing input list file for package filename<cr/lf>

Case 5:

Description:

- input list file has a LF before the package filename was found

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_4.dat

Errorlog Returncode:

- 4<tab>SPL-E_4 ERR: failed parsing input list file for package filename<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_4.dat out.log out.err

- return: FAILURE, out.err

- <tab>4<tab>SPL-E_4 ERR: failed parsing input list file for package filename<cr/lf>

Case 6:

Description:

- input list file parameter output data filename has too many characters

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_5.dat

Errorlog Returncode:

- 5<tab>SPL-E_5 ERR: failed parsing input list file for output data filename<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_5.dat out.log out.err

- return: FAILURE, out.err

- <tab>5<tab>SPL-E_5 ERR: failed parsing input list file for output data filename<cr/lf>

Case 7:

Description:

- input list file has EOF before parameter found (includes codes SPL-E_5, SPL-E_7, SPL-E_9, SPL-E_36)

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_5_EOF.dat

Errorlog Returncode:

- 5<tab>SPL-E_5 ERR: failed parsing input list file for output data filename<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_5_EOF.dat out.log out.err

- return: FAILURE, out.err

- <tab>5<tab>SPL-E_5 ERR: failed parsing input list file for output data filename<cr/lf>

Case 8:

Description:

- input list file has a LF before the output data filename was found

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_6.dat

Errorlog Returncode:

- 6<tab>SPL-E_6 ERR: failed parsing input list file for output data filename<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_6.dat out.log out.err

- return: FAILURE, out.err

- <tab>6<tab>SPL-E_6 ERR: failed parsing input list file for output data filename<cr/lf>

Case 9:

Description:

- input list file parameter output attribute filename has too many characters

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_7.dat

Errorlog Returncode:

- 7<tab>SPL-E_7 ERR: failed parsing input list file for output attribute object filename<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_7.dat out.log out.err

- return: FAILURE, out.err

- <tab>7<tab>SPL-E_7 ERR: failed parsing input list file for output attribute object filename<cr/lf>

Case 10:

Description:

- input list file has a LF before the output attribute filename was found

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_8.dat

Errorlog Returncode:

- 8<tab>SPL-E_8 ERR: failed parsing input list file for output attribute object filename<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_8.dat out.log out.err

- return: FAILURE, out.err

- <tab>8<tab>SPL-E_8 ERR: failed parsing input list file for output attribute object filename<cr/lf>

Case 11:

Description:

- input list file parameter package archival id has too many characters

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_9.dat

Errorlog Returncode:

- 9<tab>SPL-E_9 ERR: failed parsing input list file for package archival id<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_9.dat out.log out.err

- return: FAILURE, out.err

- <tab>9<tab>SPL-E_9 ERR: failed parsing input list file for package archival id<cr/lf>

Case 12:

Description:

- input list file has a <tab> before the output attribute filename was found

Procedure:

- invoke utility with input file list test file: SPLtestsuite_E_10.dat

Errorlog Returncode:

- 10<tab>SPL-E_10 ERR: failed parsing input list file for package archival id<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_10.dat out.log out.err

- return: FAILURE, out.err

- <tab>10<tab>SPL-E_10 ERR: failed parsing input list file for package archival id<cr/lf>

Case 13:

Description:

- package filename from input list file not found

Procedure:

- invoke utility with input file list test file (inside, a bogus packfile name): SPLtestsuite_E_11A.dat

Errorlog Returncode:

- 11<tab>SPL-E_11 ERR: could not access / parse package file "file name"<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_11A.dat out.log out.err

- return: SUCCESS, out.log, out.err

- <tab>11<tab>SPL-E_11 ERR: could not access / parse package file "packfile.x"<cr/lf>

Case 14:

Description:

- package filename from input list file not a valid SFDU

Procedure:

- invoke utility with input file list test file (inside, packfile is file SPLtestsuite_E_11B.dat): SPLtestsuite_E_11B.dat

Errorlog Returncode:

- 11<tab>SPL-E_11 ERR: could not access / parse package file "file name"<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_11B.dat out.log out.err

- return: SUCCESS, out.log, out.err

- <tab>11<tab>SPL-E_11 ERR: could not access / parse package file "SPLtestsuite_E_11B.dat"<cr/lf>

Case 15:

Description:

- attribute filename from input list file not a valid file path, or device not accessable

Procedure:

- invoke utility with input file list test file (inside, attribute filename is bogus dir: /tempo/att_file.1): SPLtestsuite_E_15.dat

Errorlog Returncode:

- 15<tab>SPL-E_15 ERR: could not create attribute object data file "file name"<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_15.dat out.log out.err

- return: SUCCESS, out.log, out.err

- <tab>15<tab>SPL-E_15 ERR: could not create attribute object data file "/tempo/att_file.1"<cr/lf>

Case 16:

Description:

- data object filename from input list file not a valid file path, or device not accessable

Procedure:

- invoke utility with input file list test file (inside, attribute filename is bogus dir: /tempo/dat_file.1): SPLtestsuite_E_18.dat

Errorlog Returncode:

- 18<tab>SPL-E_18 ERR: could not create object data file "file name"<cr/lf>

Result: ok

- typed: splitter SPLtestsuite_E_18.dat out.log out.err

- return: SUCCESS, out.log, out.err

- <tab>18<tab>SPL-E_18 ERR: could not create object data file "/tempo/dat_file.1"<cr/lf>

Case 17:

Description:

- arch id from input list file not the same as in packfile.1

Procedure:

- invoke utility with input file list test file (inside, bogus arch id: wrongAID1.1): SPLtestsuite_E_22.dat

Errorlog Returncode:

- 22<tab>SPL-E_22 ERR: archive ID "ID#" from input list file does not match arch id for package "file name"<cr/lf>

Result:

- typed: splitter SPLtestsuite_E_22.dat out.log out.err

- return: SUCCESS, out.log, out.err

- wrongAID1.1<tab>22<tab>SPL-E_22 ERR: archive ID "wrongAID1.1" from input list file does not match arch id for package "packfile.1"<cr/lf>

startup

setup

parameters

get input

package item

validate

package

End utility

split

package

